Skip to content

Commit

Permalink
Add VideoRAGQnA as MMRAG usecase in Example (opea-project#744)
Browse files Browse the repository at this point in the history
Signed-off-by: BaoHuiling <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: kevinintel <[email protected]>
  • Loading branch information
3 people authored and dmsuehir committed Sep 11, 2024
1 parent 13ba0c1 commit 09491de
Show file tree
Hide file tree
Showing 12 changed files with 1,266 additions and 0 deletions.
33 changes: 33 additions & 0 deletions VideoRAGQnA/Dockerfile
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@


# Copyright (C) 2024 Intel Corporation
# SPDX-License-Identifier: Apache-2.0

FROM python:3.11-slim

RUN apt-get update -y && apt-get install -y --no-install-recommends --fix-missing \
libgl1-mesa-glx \
libjemalloc-dev \
git

RUN useradd -m -s /bin/bash user && \
mkdir -p /home/user && \
chown -R user /home/user/

WORKDIR /home/user/

RUN git clone https://github.com/opea-project/GenAIComps.git

WORKDIR /home/user/GenAIComps
RUN pip install --no-cache-dir --upgrade pip && \
pip install --no-cache-dir -r /home/user/GenAIComps/requirements.txt

COPY ./videoragqna.py /home/user/videoragqna.py

ENV PYTHONPATH=$PYTHONPATH:/home/user/GenAIComps

USER user

WORKDIR /home/user

ENTRYPOINT ["python", "videoragqna.py"]
107 changes: 107 additions & 0 deletions VideoRAGQnA/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,107 @@
# VideoRAGQnA Application

Video RAG QnA is a framework that retrieves video based on provided user prompt. It uses only the video embeddings to perform vector similarity search in Intel's VDMS vector database and performs all operations on Intel Xeon CPU. The pipeline supports long form videos and time-based search.

VideoRAGQnA is implemented on top of [GenAIComps](https://github.com/opea-project/GenAIComps), with the architecture flow chart shows below:

```mermaid
---
config:
flowchart:
nodeSpacing: 100
rankSpacing: 100
curve: linear
theme: base
themeVariables:
fontSize: 42px
---
flowchart LR
%% Colors %%
classDef blue fill:#ADD8E6,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orange fill:#FBAA60,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef orchid fill:#C26DBC,stroke:#ADD8E6,stroke-width:2px,fill-opacity:0.5
classDef invisible fill:transparent,stroke:transparent;
style VideoRAGQnA-MegaService stroke:#000000
%% Subgraphs %%
subgraph VideoRAGQnA-MegaService["VideoRAGQnA-MegaService"]
direction LR
EM([Embedding <br>]):::blue
RET([Retrieval <br>]):::blue
RER([Rerank <br>]):::blue
LLM([LLM <br>]):::blue
end
subgraph User Interface
direction TB
a([User Input Query]):::orchid
UI([UI server<br>]):::orchid
Ingest([Ingest<br>]):::orchid
end
subgraph VideoRAGQnA GateWay
direction LR
invisible1[ ]:::invisible
GW([VideoRAGQnA GateWay<br>]):::orange
end
subgraph .
X([OPEA Micsrservice]):::blue
Y{{Open Source Service}}
Z([OPEA Gateway]):::orange
Z1([UI]):::orchid
end
LOCAL_RER{{Reranking service<br>}}
CLIP_EM{{Embedding service <br>}}
VDB{{Vector DB<br><br>}}
V_RET{{Retriever service <br>}}
Ingest{{Ingest data <br>}}
DP([Data Preparation<br>]):::blue
LVM_gen{{LLM Service <br>}}
%% Data Preparation flow
%% Ingest data flow
direction LR
Ingest[Ingest data] -->|a| DP
DP <-.->|b| CLIP_EM
%% Questions interaction
direction LR
a[User Input Query] -->|1| UI
UI -->|2| GW
GW <==>|3| VideoRAGQnA-MegaService
EM ==>|4| RET
RET ==>|5| RER
RER ==>|6| LLM
%% Embedding service flow
direction TB
EM <-.->|3'| CLIP_EM
RET <-.->|4'| V_RET
RER <-.->|5'| LOCAL_RER
LLM <-.->|6'| LVM_gen
direction TB
%% Vector DB interaction
V_RET <-.->|d|VDB
DP <-.->|d|VDB
```

This VideoRAGQnA use case performs RAG using LangChain, Intel VDMS VectorDB and Text Generation Inference on Intel XEON Scalable Processors.

## Deploy VideoRAGQnA Service

The VideoRAGQnA service can be effortlessly deployed on Intel XEON Scalable Processors.

### Required Models

By default, the embedding and LVM models are set to a default value as listed below:

| Service | Model |
| --------- | ---------------------------- |
| Embedding | openai/clip-vit-base-patch32 |
| LVM | DAMO-NLP-SG/Video-LLaMA |

### Deploy VideoRAGQnA on Xeon

For full instruction of deployment, please check [Guide](docker/xeon/README.md)

Currently we support deploying VideoRAGQnA services with docker compose, using the docker images `built from source`. Find the corresponding [compose.yaml](./docker/xeon/compose.yaml).
Binary file added VideoRAGQnA/assets/img/video-rag-qna.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading

0 comments on commit 09491de

Please sign in to comment.