Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Update README.md #682

Merged
merged 3 commits into from
Jan 10, 2024
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 18 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -231,6 +231,13 @@ DIANNA comes with simple datasets. Their main goal is to provide intuitive insig
| [Coffee dataset](https://timeseriesclassification.com/description.php?Dataset=Coffee) <img width="25" alt="Coffe Logo" src="https://github.com/dianna-ai/dianna/assets/3244249/9ab50a0f-5da3-41d2-80e9-70d2c8769162"> | Food spectographs time series dataset for a two class problem to distinguish between Robusta and Arabica coffee beans. | <img width="500" alt="example image" src="https://github.com/dianna-ai/dianna/assets/3244249/763002c5-40ad-48cc-9de0-ea43d7fa8a75)"> | [data source](https://github.com/QIBChemometrics/Benchtop-NMR-Coffee-Survey) |
| [Weather dataset](https://zenodo.org/record/7525955) <img width="25" alt="Weather Logo" src="https://github.com/dianna-ai/dianna/assets/3244249/3ff3d639-ed2f-4a38-b7ac-957c984bce9f"> | The light version of the weather prediciton dataset, which contains daily observations (89 features) for 11 European locations through the years 2000 to 2010. | <img width="500" alt="example image" src="https://github.com/dianna-ai/dianna/assets/3244249/b0a505ac-8a6c-4e1c-b6ad-35e31e52f46d)"> | [data source](https://github.com/florian-huber/weather_prediction_dataset) |

### Tabular

| Dataset | Description | Examples | Generation |
| :--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- | :------------------------------------------------------------------------------------------------------------------------------------------------------------- | :--------------------------------------------------------------------------------------------------------------------------------------- | :------------------------------------------------------------------------ |
| [Pengiun dataset](https://www.kaggle.com/code/parulpandey/penguin-dataset-the-new-iris) <img width="75" alt="Penguins Logo" src="https://github.com/dianna-ai/dianna/assets/3244249/c7716ad3-f992-4557-80d9-1d8178c7ed57)"> | Palmer Archipelago (Antarctica) penguin dataset is a great intro dataset for data exploration & visualization similar to the famous Iris dataset. | <img width="500" alt="example image" src="https://github.com/allisonhorst/palmerpenguins/blob/main/man/figures/README-mass-flipper-1.png"> | [data source](https://github.com/allisonhorst/palmerpenguins) |
| [Weather dataset](https://zenodo.org/record/7525955) <img width="25" alt="Weather Logo" src="https://github.com/dianna-ai/dianna/assets/3244249/3ff3d639-ed2f-4a38-b7ac-957c984bce9f"> | The light version of the weather prediciton dataset, which contains daily observations (89 features) for 11 European locations through the years 2000 to 2010. | <img width="500" alt="example image" src="https://github.com/dianna-ai/dianna/assets/3244249/b0a505ac-8a6c-4e1c-b6ad-35e31e52f46d)"> | [data source](https://github.com/florian-huber/weather_prediction_dataset) |

## ONNX models

<!-- TODO: Add all links, see issue https://github.com/dianna-ai/dianna/issues/135 -->
Expand Down Expand Up @@ -267,6 +274,14 @@ And here are links to notebooks showing how we created our models on the benchma
| Coffee model | [Coffee model generation](https://github.com/dianna-ai/dianna-exploration/blob/main/example_data/model_generation/coffee/generate_model.ipynb) |
| [Season prediction model](https://zenodo.org/record/7543883) | [Season prediction model generation](https://github.com/dianna-ai/dianna-exploration/blob/main/example_data/model_generation/season_prediction/generate_model.ipynb) |

### Tabular

| Models | Generation |
| :-------------------------------------------------------- | :---------------------------------------------------------------------------------------------------------------------------------------------------------------- |
| Penguin model (classification) | [Penguin model generation](https://github.com/dianna-ai/dianna-exploration/blob/main/example_data/model_generation/penguin_species/generate_model.ipynb) |
| Sunshine hours prediction model (regression) | [Sunshine hours prediction model generation](https://github.com/dianna-ai/dianna-exploration/blob/main/example_data/model_generation/sunshine_prediction/generate_model.ipynb) |


**_We envision the birth of the ONNX Scientific models zoo soon..._**

## Tutorials
Expand All @@ -279,9 +294,9 @@ DIANNA supports different data modalities and XAI methods. The table contains li
| :--------- | :------------------------------------------------ | :----------------------------------------------------------------- | :--------------------------------------------------------------------------------------------------- |
| Images | ✅ | ✅ | ✅ |
| Text | ✅ | ✅ | |
| Timeseries | ✅ | ✅ | |
| Embedding | planned | planned | planned |
| Tabular | planned | planned | planned |
| Timeseries | ✅ | ✅ | |
| Tabular | planned | | planned |
| Embedding | planned | planned | planned
| Graphs* | work in progress | work in progress | work in progress |

[LRP](https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0130140&type=printable) and [PatternAttribution](https://arxiv.org/pdf/1705.05598.pdf) also feature in the top 5 of our thoroughly evaluated XAI methods using objective criteria (details in coming blog-post). **Contributing by adding these and more (new) post-hoc explainability methods on ONNX models is very welcome!**
Expand Down