This are set of UDFs and queries that you can use with Hive to use TPCH datagen in parrellel on hadoop cluster. You can deploy to azure using :
-
Clone this repo.
git clone https://github.com/dharmeshkakadia/tpch-datagen-as-hive-query/ && cd tpch-datagen-as-hive-query
-
Run TPCHDataGen.hql with settings.hql file and set the required config variables.
hive -i settings.hql -f TPCHDataGen.hql -hiveconf SCALE=10 -hiveconf PARTS=10 -hiveconf LOCATION=/HiveTPCH/ -hiveconf TPCHBIN=resources
Here,
SCALE
is a scale factor for TPCH,PARTS
is a number of task to use for datagen (parrellelization),LOCATION
is the directory where the data will be stored on HDFS,TPCHBIN
is where the resources are found. You can specify specific settings in settings.hql file. -
Now you can create tables on the generated data.
hive -i settings.hql -f ddl/createAllExternalTables.hql -hiveconf LOCATION=/HiveTPCH/ -hiveconf DBNAME=tpch
Generate ORC tables and analyze
hive -i settings.hql -f ddl/createAllORCTables.hql -hiveconf ORCDBNAME=tpch_orc -hiveconf SOURCE=tpch hive -i settings.hql -f ddl/analyze.hql -hiveconf ORCDBNAME=tpch_orc
-
Run the queries !
hive -database tpch_orc -i settings.hql -f queries/tpch_query1.hql
-
Clone this repo.
git clone https://github.com/dharmeshkakadia/tpch-datagen-as-hive-query/ && cd tpch-datagen-as-hive-query
-
Upload the resources to DFS.
hdfs dfs -copyFromLocal resoruces /tmp
-
Run TPCHDataGen.hql with settings.hql file and set the required config variables.
beeline -u "jdbc:hive2://`hostname -f`:10001/;transportMode=http" -n "" -p "" -i settings.hql -f TPCHDataGen.hql -hiveconf SCALE=10 -hiveconf PARTS=10 -hiveconf LOCATION=/HiveTPCH/ -hiveconf TPCHBIN=`grep -A 1 "fs.defaultFS" /etc/hadoop/conf/core-site.xml | grep -o "wasb[^<]*"`/tmp/resources
Here,
SCALE
is a scale factor for TPCH,PARTS
is a number of task to use for datagen (parrellelization),LOCATION
is the directory where the data will be stored on HDFS,TPCHBIN
is where the resources are uploaded on step 2. You can specify specific settings in settings.hql file. -
Now you can create tables on the generated data.
beeline -u "jdbc:hive2://`hostname -f`:10001/;transportMode=http" -n "" -p "" -i settings.hql -f ddl/createAllExternalTables.hql -hiveconf LOCATION=/HiveTPCH/ -hiveconf DBNAME=tpch
Generate ORC tables and analyze
beeline -u "jdbc:hive2://`hostname -f`:10001/;transportMode=http" -n "" -p "" -i settings.hql -f ddl/createAllORCTables.hql -hiveconf ORCDBNAME=tpch_orc -hiveconf SOURCE=tpch beeline -u "jdbc:hive2://`hostname -f`:10001/;transportMode=http" -n "" -p "" -i settings.hql -f ddl/analyze.hql -hiveconf ORCDBNAME=tpch_orc
-
Run the queries !
beeline -u "jdbc:hive2://`hostname -f`:10001/tpch_orc;transportMode=http" -n "" -p "" -i settings.hql -f queries/tpch_query1.hql
If you want to run all the queries 10 times and measure the times it takes, you can use the following command:
for f in queries/*.sql; do for i in {1..10} ; do STARTTIME="`date +%s`"; beeline -u "jdbc:hive2://`hostname -f`:10001/tpch_orc;transportMode=http" -i settings.hql -f $f > $f.run_$i.out 2>&1 ; ENDTIME="`date +%s`"; echo "$f,$i,$STARTTIME,$ENDTIME,$(($ENDTIME-$STARTTIME))" >> times_orc.csv; done; done;
-
Does it work with scale factor 1?
No. The parrellel data generation assumes that scale > 1. If you are just starting out, I would suggest you start with 10 and then move to standard higher scale factors (100, 1000, 10000,..)
-
Do I have to specify PARTS=SCALE ?
Yes.
-
How do I avoid my session getting killed due to network errors while long running benchmark?
Use byobu. Type byobu which will start a new session and then run the command. It will be there when you come back even if your network connection is broken.