IDR Chip-seq: https://hbctraining.github.io/Intro-to-ChIPseq/lessons/07_handling-replicates-idr.html
Remap 2020: http://remap.univ-amu.fr/
About transcriptome based rna-seq:
Using binder with R:
Recount3: http://rna.recount.bio/
Snakemake checkpoints: http://ivory.idyll.org/blog/2021-snakemake-checkpoints.html
conda env on hpc: https://kb.iu.edu/d/axgp#conda-init
Reproducible toolkit: https://rdmkit.elixir-europe.org/index.html
Interoperability platform: https://elixir-europe.org/platforms/interoperability
workflow hub: https://workflowhub.eu/
guide to reproducible research: https://the-turing-way.netlify.app/reproducible-research/reproducible-research.html
galaxy admin: https://github.com/galaxyproject/admin-training
fastq repo: ftp://ftp.sra.ebi.ac.uk/vol1/fastq/
kahoot: kahoot.it / kahoot.com
Elixir train the trainer: https://docs.google.com/document/d/1ZkwDJDii5nHFPDsiMto-Fwyw9W1od9IHDzJL_t-uuR8/edit#
ATAC-Seq video: https://www.youtube.com/watch?v=VZFUu_cJxyI
CookieCutter: https://medium.com/worldsensing-techblog/project-templates-and-cookiecutter-6d8f99a06374
Multi-omics workshop: https://uppsala.instructure.com/courses/52162/pages/schedule
Authorships: https://credit.niso.org/ http://www.icmje.org/recommendations/browse/roles-and-responsibilities/defining-the-role-of-authors-and-contributors.html https://publicationethics.org/authorship
Publication ethics: https://www.councilscienceeditors.org/resource-library/editorial-policies/white-paper-on-publication-ethics/
EMBL open science: https://www.embl.org/internal-information/wp-content/uploads/2021/12/open-science-implementation-guidelines.pdf
The Declaration on Research Assessment: https://sfdora.org/
Multi-stages singularity by Francesco: https://git.embl.de/tabaro/snakemake-pipelines/-/blob/main/singularity/Singularity.bedtools
singularity CI by Francesco: https://git.embl.de/tabaro/snakemake-pipelines/-/blob/main/.gitlab-ci.yml
singularity CI by IT: https://git.embl.de/grp-itservices/singularity-reg/-/blob/master/.gitlab-ci.yml
spatial-transcriptomics: https://www.nature.com/articles/s41587-021-01006-2#Sec9 https://www.nature.com/articles/s41586-019-1049-y https://biofam.github.io/MOFA2/MEFISTO.html https://squidpy.readthedocs.io/en/stable/auto_tutorials/tutorial_seqfish.html https://github.com/spacetx/starfish#starfish-scalable-pipelines-for-image-based-transcriptomics
Graphical access with x2go: https://wiki.embl.de/cluster/Env#Graphical_Access
Workflowhub: https://about.workflowhub.eu/
Workflows community initiative: https://workflows.community/
Look at docker recipe: https://git.embl.de/kaspar/learnr-project
Awsome pipelines repository: https://github.com/pditommaso/awesome-pipeline
Nextflow tutorial to start with: https://sateeshperi.github.io/nextflow_varcal/nextflow/
Nextflow tutorials: https://nf-co.re/docs/usage/nextflow
About managing a core: https://www.researchcomputingteams.org/resources
JBrowse 2: https://jbrowse.org/jb2/
Visual integration tool for exploration of spatial single cell experiments: http://vitessce.io/
human body at single-cell resolution: https://hubmapconsortium.org/
psupertime: supervised pseudotime analysis for time-series single-cell RNA-seq data https://academic.oup.com/bioinformatics/article/38/Supplement_1/i290/6617492
About using nextflow: https://www.reddit.com/r/bioinformatics/comments/sc8e0i/does_everyone_use_nextflow_thesedays/?utm_source=share&utm_medium=web2x&context=3
spacemake: https://academic.oup.com/gigascience/article/doi/10.1093/gigascience/giac064/6646447?login=true
--------------------- Aug 2022
Neuroscience Cloud Analysis As a Service: https://www.biorxiv.org/content/10.1101/2020.06.11.146746v2 http://www.neurocaas.org/analyses/
Choose your statistical test: https://www.statstest.com/
Collection of singularities: https://depot.galaxyproject.org/singularity/
open ebench: https://openebench.bsc.es/benchmarking
Workflow finder: https://australianbiocommons.github.io/2_1_workflows.html
GitHub Actions Tutorial - Basic Concepts and CI/CD Pipeline with Docker: https://www.youtube.com/watch?v=R8_veQiYBjI
Dockerhub best practices: https://www.docker.com/blog/best-practices-for-using-docker-hub-for-ci-cd/
Publishing docker images with github actions: https://docs.github.com/en/actions/publishing-packages/publishing-docker-images
snakemake tutorial: https://edcarp.github.io/2022-11-08_ed-dash_workflows-snakemake/
Nextflow tutorial: https://edcarp.github.io/2023-01-24_ed-dash_workflows-nextflow/
10 things for Curating Reproducible and FAIR Research: https://curating4reproducibility.org/10things/
Preventing a file from being modified on pull request using github CI: https://docs.github.com/en/actions/using-workflows/triggering-a-workflow#accessing-and-using-event-properties
Running a workflow only if a previous one succeeded on github CI: https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows#running-a-workflow-based-on-the-conclusion-of-another-workflow
The github check API: https://docs.github.com/en/rest/guides/getting-started-with-the-checks-api
Amazon workshop: http://slchen-lab-training.s3-website-ap-southeast-1.amazonaws.com/01-hpc-overview.html
https://www.frontiersin.org/articles/10.3389/fncir.2020.00025/full https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1008565 https://cns2020online.sched.com/event/cslO/w2-s07-online-methods-for-real-time-analysis-of-calcium-imaging-data https://cbmm.mit.edu/learning-hub/tutorials/computational-tutorial/calcium-imaging-data-cell-extraction https://www.ml.cmu.edu/research/joint_phd_dissertations/Zhou-Pengcheng-thesis-cnbc-2016.pdf https://www.cnsorg.org/ https://www.cnsorg.org/committees https://www.youtube.com/channel/UCqz8NIG24tV1HHCkKidA4Nw/videos https://neurostars.org/ https://neurostars.org/g/OCNSStudentSig https://www.cnsorg.org/newsletter
https://git.embl.de/tabaro/snakemake-playground
FAIR Computational Workflows: https://direct.mit.edu/dint/article/2/1-2/108/10003/FAIR-Computational-Workflows
Tess training material: https://tess.elixir-europe.org/
Single-cell on galaxy: https://singlecell.usegalaxy.eu/
AWS and scientific computing: https://www.noahlebovic.com/aws-doesnt-make-sense-for-scientific-computing/
Tutorial by Sarah Kasper on Biostatistics: https://www.ebi.ac.uk/training/online/courses/biostatistics-introduction/
Resources for RNA-seq processed data: https://maayanlab.cloud/archs4/index.html
Babraham training material: https://www.bioinformatics.babraham.ac.uk/training.html
fastqscreen: https://www.bioinformatics.babraham.ac.uk/projects/fastq_screen/
UX toolkit for Life Sciences: https://uxls.org/
The perfect team by Google: 1 & 2
Python visualization (comparison):
- https://streamlit.io/
- https://docs.bokeh.org/en/latest/
- https://altair-viz.github.io/
- https://dash.plotly.com/
Genomics and software engineering: https://news.ycombinator.com/item?id=33671264
sapling (git control): https://engineering.fb.com/2022/11/15/open-source/sapling-source-control-scalable/
About Free Open Source Software (FOSS): https://www.kooslooijesteijn.net/blog/why-is-free-open-source-software-badly-designed?pk_campaign=rss
Single-cell best practices: https://www.sc-best-practices.org/preamble.html
Scientific publishing with Quarto: https://quarto.org/
Here are some resources for teaching Bioinformatics:
- https://bio-it.embl.de/course-materials/
- https://tess.elixir-europe.org/materials
- https://elixir-fair-training.github.io/FAIR-training-handbook/
- https://www.mygoblet.org/training-materials/
- https://www.mygoblet.org/training-portal/
- https://www.ebi.ac.uk/training/on-demand
- https://www.bioinformatics.babraham.ac.uk/training.html
- https://training.galaxyproject.org/
- https://github.com/carpentries-incubator
- https://software-carpentry.org/lessons/
- https://github.com/gladstone-institutes/Bioinformatics-Workshops/wiki
- https://bioinformatics.sph.harvard.edu/training
Can Bioinformatics Work As Data Scientist? https://workwut.com/bioinformatics-work-data-scientist/
spike-chip: https://academic.oup.com/nargab/article/3/3/lqab064/6329082
What Is the Key Best Practice for Collaborating with a Computational Biologist?: see here
T3E: a tool for characterising the epigenetic profile of transposable elements using ChIP-seq data: https://mobilednajournal.biomedcentral.com/articles/10.1186/s13100-022-00285-z
Learning git: https://docs.github.com/en/get-started/quickstart/set-up-git
18 repositories for developpers: See Tweet
Fundamentals of data visualization: https://clauswilke.com/dataviz/
Conda docker tutorial: https://kevalnagda.github.io/conda-docker-tutorial
Intro to containers: https://biocorecrg.github.io/CoursesCRG_Containers_Nextflow_May_2021/index.html
SeqCode: http://ldicrocelab.crg.eu/index.php
Change chrom names in bam files: http://lindenb.github.io/jvarkit/ConvertBamChromosomes.html
Galaxy tutorial on make and snakemake: https://training.galaxyproject.org/training-material/topics/data-science/tutorials/snakemake/tutorial.html
Web app with Flask: https://www.digitalocean.com/community/tutorials/how-to-make-a-web-application-using-flask-in-python-3
List comprehension in Python: https://www.w3schools.com/python/python_lists_comprehension.asp
BioGPT: https://github.com/microsoft/BioGPT
Bioinfo training materials: https://glittr.org/?per_page=25&sort_by=stargazers&sort_direction=desc
Bioconvert: https://www.biorxiv.org/content/10.1101/2023.03.13.532455v2.abstract
deepscatter: https://observablehq.com/@bmschmidt/arxiv
configure R in Vscode: https://code.visualstudio.com/docs/languages/r#_getting-started
libmamba: https://www.anaconda.com/blog/a-faster-conda-for-a-growing-community
Easeq: https://easeq.net/demo/
Human Pangenome Consortium release: https://www.embl.org/news/science/a-more-diverse-human-reference-genome/
Logistic regression clearly explained: https://www.youtube.com/watch?v=9zw76PT3tzs
why do we use sigmoids: https://www.youtube.com/watch?v=Aj7O9qRNJPY
Maximum likelihood clearly explained: https://www.youtube.com/watch?v=VOIhswqFWVc
Expectation-maximization clearly explained: https://www.youtube.com/watch?v=xy96ArOpntA&t=557s