Skip to content

Keras implementation of yolo v3 object detection.

License

Notifications You must be signed in to change notification settings

dennistang742/YOLOv3

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

YOLOv3

Keras(TF backend) implementation of yolo v3 objects detection.

According to the paper YOLOv3: An Incremental Improvement.

Requirement

  • OpenCV 3.4
  • Python 3.6
  • Tensorflow-gpu 1.5.0
  • Keras 2.1.3

Quick start

  • Download official yolov3.weights and put it on top floder of project.

  • Run the follow command to convert darknet weight file to keras h5 file. The yad2k.py was modified from allanzelener/YAD2K.

python yad2k.py cfg\yolo.cfg yolov3.weights data\yolo.h5
  • run follow command to show the demo. The result can be found in images\res\ floder.
python demo.py

Demo result

It can be seen that yolo v3 has a better classification ability than yolo v2.

TODO

  • Train the model.

Reference

@article{YOLOv3,  
  title={YOLOv3: An Incremental Improvement},  
  author={J Redmon, A Farhadi },
  year={2018}

Copyright

See LICENSE for details.

About

Keras implementation of yolo v3 object detection.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 84.8%
  • MATLAB 15.2%