This repository is the official implementation of Towards a Unified Framework for Consistency Generative Modeling.
Consistency generative modeling relies on a probability density path
pip install -r requirements.txt
-
Place the downloaded dataset in ./data.
-
Configure hyperparameters in ./config.
-
To train the model(s) in the paper, run this command:
python main.py --model DCM|DCM-MS|CCM|CCM-OT|PCM --data Cifar10
python main.py --model DCM|DCM-MS|CCM|CCM-OT|PCM --data Celeba
python main.py --model CCM|CCM-OT --data AFHQ --task Im2Im
-
Place reference samples in ./assets
-
To test the model(s) and calculate the metrics in the paper, run this command:
python main.py --model DCM|DCM-MS|CCM|CCM-OT|PCM --data Cifar10 --train False