Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: FAISS in OpenSearch: Support HNSW for dot product and l2 #3029

Merged
merged 9 commits into from
Aug 24, 2022
Merged
Show file tree
Hide file tree
Changes from 7 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
4 changes: 3 additions & 1 deletion docs/_src/api/api/document_store.md
Original file line number Diff line number Diff line change
Expand Up @@ -1463,7 +1463,7 @@ class OpenSearchDocumentStore(BaseElasticsearchDocumentStore)
#### OpenSearchDocumentStore.\_\_init\_\_

```python
def __init__(scheme: str = "https", username: str = "admin", password: str = "admin", host: Union[str, List[str]] = "localhost", port: Union[int, List[int]] = 9200, api_key_id: Optional[str] = None, api_key: Optional[str] = None, aws4auth=None, index: str = "document", label_index: str = "label", search_fields: Union[str, list] = "content", content_field: str = "content", name_field: str = "name", embedding_field: str = "embedding", embedding_dim: int = 768, custom_mapping: Optional[dict] = None, excluded_meta_data: Optional[list] = None, analyzer: str = "standard", ca_certs: Optional[str] = None, verify_certs: bool = False, recreate_index: bool = False, create_index: bool = True, refresh_type: str = "wait_for", similarity: str = "dot_product", timeout: int = 30, return_embedding: bool = False, duplicate_documents: str = "overwrite", index_type: str = "flat", scroll: str = "1d", skip_missing_embeddings: bool = True, synonyms: Optional[List] = None, synonym_type: str = "synonym", use_system_proxy: bool = False)
def __init__(scheme: str = "https", username: str = "admin", password: str = "admin", host: Union[str, List[str]] = "localhost", port: Union[int, List[int]] = 9200, api_key_id: Optional[str] = None, api_key: Optional[str] = None, aws4auth=None, index: str = "document", label_index: str = "label", search_fields: Union[str, list] = "content", content_field: str = "content", name_field: str = "name", embedding_field: str = "embedding", embedding_dim: int = 768, custom_mapping: Optional[dict] = None, excluded_meta_data: Optional[list] = None, analyzer: str = "standard", ca_certs: Optional[str] = None, verify_certs: bool = False, recreate_index: bool = False, create_index: bool = True, refresh_type: str = "wait_for", similarity: str = "dot_product", timeout: int = 30, return_embedding: bool = False, duplicate_documents: str = "overwrite", index_type: str = "flat", scroll: str = "1d", skip_missing_embeddings: bool = True, synonyms: Optional[List] = None, synonym_type: str = "synonym", use_system_proxy: bool = False, knn_engine: str = "nmslib")
```

Document Store using OpenSearch (https://opensearch.org/). It is compatible with the AWS Elasticsearch Service.
Expand Down Expand Up @@ -1535,6 +1535,8 @@ More info at https://www.elastic.co/guide/en/elasticsearch/reference/current/ana
- `synonym_type`: Synonym filter type can be passed.
Synonym or Synonym_graph to handle synonyms, including multi-word synonyms correctly during the analysis process.
More info at https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-synonym-graph-tokenfilter.html
- `knn_engine`: The engine to use for nearest neighbor search by OpenSearch's KNN plug-in. Values can be "nmslib" or "faiss". Defaults to "nmslib".
See https://opensearch.org/docs/latest/search-plugins/knn/knn-index/ for more information.

<a id="opensearch.OpenSearchDocumentStore.query_by_embedding"></a>

Expand Down
20 changes: 18 additions & 2 deletions haystack/document_stores/opensearch.py
Original file line number Diff line number Diff line change
Expand Up @@ -61,6 +61,7 @@ def __init__(
synonyms: Optional[List] = None,
synonym_type: str = "synonym",
use_system_proxy: bool = False,
knn_engine: str = "nmslib",
):
"""
Document Store using OpenSearch (https://opensearch.org/). It is compatible with the AWS Elasticsearch Service.
Expand Down Expand Up @@ -130,6 +131,8 @@ def __init__(
:param synonym_type: Synonym filter type can be passed.
Synonym or Synonym_graph to handle synonyms, including multi-word synonyms correctly during the analysis process.
More info at https://www.elastic.co/guide/en/elasticsearch/reference/current/analysis-synonym-graph-tokenfilter.html
:param knn_engine: The engine to use for nearest neighbor search by OpenSearch's KNN plug-in. Values can be "nmslib" or "faiss". Defaults to "nmslib".
masci marked this conversation as resolved.
Show resolved Hide resolved
See https://opensearch.org/docs/latest/search-plugins/knn/knn-index/ for more information.
masci marked this conversation as resolved.
Show resolved Hide resolved
"""
# These parameters aren't used by Opensearch at the moment but could be in the future, see
# https://github.com/opensearch-project/security/issues/1504. Let's not deprecate them for
Expand Down Expand Up @@ -165,6 +168,15 @@ def __init__(
f"Make sure an Opensearch instance is running at `{host}` and that it has finished booting (can take > 30s)."
)

if knn_engine not in {"nmslib", "faiss"}:
raise ValueError(f"knn_engine must be either 'nmslib' or 'faiss' but was {knn_engine}")

if knn_engine == "faiss" and similarity not in {"dot_product", "l2"}:
raise ValueError(
f"Currently only 'dot_product' and 'l2' similarities are supported for knn_engine='faiss' but was {similarity}"
masci marked this conversation as resolved.
Show resolved Hide resolved
)

self.knn_engine = knn_engine
self.embeddings_field_supports_similarity = False
self.similarity_to_space_type = {"cosine": "cosinesimil", "dot_product": "innerproduct", "l2": "l2"}
self.space_type_to_similarity = {v: k for k, v in self.similarity_to_space_type.items()}
Expand Down Expand Up @@ -448,7 +460,7 @@ def _create_document_index(self, index_name: str, headers: Optional[Dict[str, st
f"e.g. `OpenSearchDocumentStore(index='my_new_{self.similarity}_index', similarity='{self.similarity}')`."
)

# Adjust global ef_search setting. If not set, default is 512.
# Adjust global ef_search setting (nmslib only). If not set, default is 512.
ef_search = index_settings.get("knn.algo_param", {"ef_search": 512}).get("ef_search", 512)
if self.index_type == "hnsw" and ef_search != 20:
body = {"knn.algo_param.ef_search": 20}
Expand Down Expand Up @@ -491,6 +503,7 @@ def _create_document_index(self, index_name: str, headers: Optional[Dict[str, st

if self.embedding_field:
index_definition["settings"]["index"] = {"knn": True}
# global ef_search setting affects only nmslib, for faiss it is set in the field mapping
if self.index_type == "hnsw":
index_definition["settings"]["index"]["knn.algo_param.ef_search"] = 20
index_definition["mappings"]["properties"][self.embedding_field] = self._get_embedding_field_mapping(
Expand All @@ -509,14 +522,17 @@ def _create_document_index(self, index_name: str, headers: Optional[Dict[str, st

def _get_embedding_field_mapping(self, similarity: str):
space_type = self.similarity_to_space_type[similarity]
method: dict = {"space_type": space_type, "name": "hnsw", "engine": "nmslib"}
method: dict = {"space_type": space_type, "name": "hnsw", "engine": self.knn_engine}

if self.index_type == "flat":
# use default parameters from https://opensearch.org/docs/1.2/search-plugins/knn/knn-index/
# we need to set them explicitly as aws managed instances starting from version 1.2 do not support empty parameters
method["parameters"] = {"ef_construction": 512, "m": 16}
elif self.index_type == "hnsw":
method["parameters"] = {"ef_construction": 80, "m": 64}
# for nmslib this is a global index setting
if self.knn_engine == "faiss":
method["parameters"]["ef_search"] = 20
else:
logger.error("Please set index_type to either 'flat' or 'hnsw'")

Expand Down
5 changes: 5 additions & 0 deletions haystack/json-schemas/haystack-pipeline-master.schema.json
Original file line number Diff line number Diff line change
Expand Up @@ -1474,6 +1474,11 @@
"title": "Use System Proxy",
"default": false,
"type": "boolean"
},
"knn_engine": {
"title": "Knn Engine",
"default": "nmslib",
"type": "string"
}
},
"additionalProperties": false,
Expand Down
49 changes: 49 additions & 0 deletions test/document_stores/test_opensearch.py
Original file line number Diff line number Diff line change
Expand Up @@ -165,6 +165,10 @@ def labels(self, documents):
def test___init__(self):
OpenSearchDocumentStore(index="default_index", port=9201, create_index=True)

@pytest.mark.integration
def test___init___faiss(self):
OpenSearchDocumentStore(index="faiss_index", port=9201, create_index=True, knn_engine="faiss")

@pytest.mark.integration
def test_write_documents(self, ds, documents):
ds.write_documents(documents)
Expand Down Expand Up @@ -598,6 +602,35 @@ def test__create_document_index_no_index_no_mapping_with_embedding_field(self, m
},
}

@pytest.mark.unit
def test__create_document_index_no_index_no_mapping_faiss(self, mocked_document_store):
mocked_document_store.client.indices.exists.return_value = False
mocked_document_store.knn_engine = "faiss"
mocked_document_store._create_document_index(self.index_name)
_, kwargs = mocked_document_store.client.indices.create.call_args
assert kwargs["body"] == {
"mappings": {
"dynamic_templates": [
{"strings": {"mapping": {"type": "keyword"}, "match_mapping_type": "string", "path_match": "*"}}
],
"properties": {
"content": {"type": "text"},
"embedding": {
"dimension": 768,
"method": {
"engine": "faiss",
"name": "hnsw",
"parameters": {"ef_construction": 512, "m": 16},
"space_type": "innerproduct",
},
"type": "knn_vector",
},
"name": {"type": "keyword"},
},
},
"settings": {"analysis": {"analyzer": {"default": {"type": "standard"}}}, "index": {"knn": True}},
}

@pytest.mark.unit
def test__create_document_index_client_failure(self, mocked_document_store):
mocked_document_store.client.indices.exists.return_value = False
Expand Down Expand Up @@ -636,6 +669,22 @@ def test__get_embedding_field_mapping_hnsw(self, mocked_document_store):
},
}

@pytest.mark.unit
def test__get_embedding_field_mapping_hnsw_faiss(self, mocked_document_store):
mocked_document_store.index_type = "hnsw"
mocked_document_store.knn_engine = "faiss"

assert mocked_document_store._get_embedding_field_mapping("dot_product") == {
"type": "knn_vector",
"dimension": 768,
"method": {
"space_type": "innerproduct",
"name": "hnsw",
"engine": "faiss",
"parameters": {"ef_construction": 80, "m": 64, "ef_search": 20},
},
}

@pytest.mark.unit
def test__get_embedding_field_mapping_wrong(self, mocked_document_store, caplog):
mocked_document_store.index_type = "foo"
Expand Down