Skip to content

Commit

Permalink
Add PineconeDocumentStore (#2254)
Browse files Browse the repository at this point in the history
* added core install and functionality of pinecone doc store (init, upsert, query, delete)

* implemented core functionality of Pinecone doc store

* Update Documentation & Code Style

* updated filtering to use Haystack filtering and reduced default batch_size

* Update Documentation & Code Style

* removed debugging code

* updated Pinecone filtering to use filter_utils

* removed uneeded methods and minor tweaks to current methods

* fixed typing issues

* Update Documentation & Code Style

* Allow filters in al methods except get_embedding_count

* Fix skipping document store tests

* Update Documentation & Code Style

* Fix handling of Milvus1 and Milvus2 in tests

* Update Documentation & Code Style

* Fix handling of Milvus1 and Milvus2 in tests

* Update Documentation & Code Style

* Remove SQL from tests requiring embeddings

* Update Documentation & Code Style

* Fix get_embedding_count of Milvus2

* Make sure to start Milvus2 tests with a new collection

* Add pinecone to test suite

* Update Documentation & Code Style

* Fix typing

* Update Documentation & Code Style

* Add pinecone to docstores dependendcy

* Add PineconeDocStore to API Documentation

* Add missing comma

* Update Documentation & Code Style

* Adapt format of doc strings

* Update Documentation & Code Style

* Set API key as environment variable

* Skip Pinecone tests in forks

* Add sleep after deleting index

* Add sleep after deleting index

* Add sleep after creating index

* Add check if index ready

* Remove printing of index stats

* Create new index for each pinecone test

* Use RestAPI instead of Python API for describe_index_stats

* Fix accessing describe_index_stats

* Remove usages of describe_index_stats

* Run pinecone tests separately

* Update Documentation & Code Style

* Add pdftotext to pinecone tests

* Remove sleep from doc store fixture

* Add describe_index_stats

* Remove unused imports

* Use pull_request_target trigger

* Revert use pull_request_target trigger

* Remove set_config

* Add os to conftest

* Integrate review comments

* Set include_values to False

* Remove quotation marks from pinecone.Index type

* Update Documentation & Code Style

* Update Documentation & Code Style

* Fix number of args in error messages

Co-authored-by: github-actions[bot] <41898282+github-actions[bot]@users.noreply.github.com>
Co-authored-by: bogdankostic <[email protected]>
  • Loading branch information
3 people authored Mar 21, 2022
1 parent 7261377 commit 8cd73a9
Show file tree
Hide file tree
Showing 11 changed files with 1,181 additions and 19 deletions.
35 changes: 35 additions & 0 deletions .github/workflows/linux_ci.yml
Original file line number Diff line number Diff line change
Expand Up @@ -298,6 +298,8 @@ jobs:
pip install ui/
- name: Run tests
env:
PINECONE_API_KEY: ${{ secrets.PINECONE_API_KEY }}
run: pytest -s ${{ matrix.test-path }}


Expand Down Expand Up @@ -346,3 +348,36 @@ jobs:
run: |
export MILVUS1_ENABLED=1
pytest -s test/test_document_store.py test/test_eval.py test/test_faiss_and_milvus.py test/test_pipeline.py test/test_retriever.py test/test_standard_pipelines.py --document_store_type="milvus1"
test-pinecone:
needs: build-cache
runs-on: ubuntu-20.04

steps:
- uses: actions/checkout@v2
- run: echo "date=$(date +'%Y-%m-%d')" >> $GITHUB_ENV

- name: Set up Python 3.7
uses: actions/setup-python@v2
with:
python-version: 3.7

- name: Cache Python
uses: actions/cache@v2
with:
path: ${{ env.pythonLocation }}
key: linux-${{ env.date }}-${{ hashFiles('**/setup.py') }}-${{ hashFiles('**/setup.cfg') }}-${{ hashFiles('**/pyproject.toml') }}

- name: Install pdftotext
run: wget --no-check-certificate https://dl.xpdfreader.com/xpdf-tools-linux-4.03.tar.gz && tar -xvf xpdf-tools-linux-4.03.tar.gz && sudo cp xpdf-tools-linux-4.03/bin64/pdftotext /usr/local/bin

# Haystack needs to be reinstalled at this stage to make sure the current commit's version is the one getting tested.
# The cache can last way longer than a specific action's run, so older Haystack version could be carried over.
- name: Reinstall Haystack
run: |
pip install .[test]
- name: Run tests
env:
PINECONE_API_KEY: ${{ secrets.PINECONE_API_KEY }}
run: pytest -s test/test_document_store.py test/test_pipeline.py test/test_standard_pipelines.py test/test_pipeline_extractive_qa.py --document_store_type="pinecone"
331 changes: 331 additions & 0 deletions docs/_src/api/api/document_store.md
Original file line number Diff line number Diff line change
Expand Up @@ -4120,6 +4120,337 @@ exists.

None

<a id="pinecone"></a>

# Module pinecone

<a id="pinecone.PineconeDocumentStore"></a>

## PineconeDocumentStore

```python
class PineconeDocumentStore(SQLDocumentStore)
```

Document store for very large scale embedding based dense retrievers like the DPR. This is a hosted document store,
this means that your vectors will not be stored locally but in the cloud. This means that the similarity
search will be run on the cloud as well.

It implements the Pinecone vector database ([https://www.pinecone.io](https://www.pinecone.io))
to perform similarity search on vectors. In order to use this document store, you need an API key that you can
obtain by creating an account on the [Pinecone website](https://www.pinecone.io).

The document text is stored using the SQLDocumentStore, while
the vector embeddings and metadata (for filtering) are indexed in a Pinecone Index.

<a id="pinecone.PineconeDocumentStore.__init__"></a>

#### \_\_init\_\_

```python
def __init__(api_key: str, environment: str = "us-west1-gcp", sql_url: str = "sqlite:///pinecone_document_store.db", pinecone_index: Optional[pinecone.Index] = None, embedding_dim: int = 768, return_embedding: bool = False, index: str = "document", similarity: str = "cosine", replicas: int = 1, shards: int = 1, embedding_field: str = "embedding", progress_bar: bool = True, duplicate_documents: str = "overwrite")
```

**Arguments**:

- `api_key`: Pinecone vector database API key ([https://app.pinecone.io](https://app.pinecone.io)).
- `environment`: Pinecone cloud environment uses `"us-west1-gcp"` by default. Other GCP and AWS regions are
supported, contact Pinecone [here](https://www.pinecone.io/contact/) if required.
- `sql_url`: SQL connection URL for database. It defaults to local file based SQLite DB. For large scale
deployment, Postgres is recommended.
- `pinecone_index`: pinecone-client Index object, an index will be initialized or loaded if not specified.
- `embedding_dim`: The embedding vector size.
- `return_embedding`: Whether to return document embeddings.
- `index`: Name of index in document store to use.
- `similarity`: The similarity function used to compare document vectors. `"dot_product"` is the default
since it is more performant with DPR embeddings. `"cosine"` is recommended if you are using a
Sentence-Transformer model.
In both cases, the returned values in Document.score are normalized to be in range [0,1]:
- For `"dot_product"`: `expit(np.asarray(raw_score / 100))`
- For `"cosine"`: `(raw_score + 1) / 2`
- `replicas`: The number of replicas. Replicas duplicate the index. They provide higher availability and
throughput.
- `shards`: The number of shards to be used in the index. We recommend to use 1 shard per 1GB of data.
- `embedding_field`: Name of field containing an embedding vector.
- `progress_bar`: Whether to show a tqdm progress bar or not.
Can be helpful to disable in production deployments to keep the logs clean.
- `duplicate_documents`: Handle duplicate documents based on parameter options.\
Parameter options:
- `"skip"`: Ignore the duplicate documents.
- `"overwrite"`: Update any existing documents with the same ID when adding documents.
- `"fail"`: An error is raised if the document ID of the document being added already exists.

<a id="pinecone.PineconeDocumentStore.write_documents"></a>

#### write\_documents

```python
def write_documents(documents: Union[List[dict], List[Document]], index: Optional[str] = None, batch_size: int = 32, duplicate_documents: Optional[str] = None, headers: Optional[Dict[str, str]] = None)
```

Add new documents to the DocumentStore.

**Arguments**:

- `documents`: List of `Dicts` or list of `Documents`. If they already contain embeddings, we'll index them
right away in Pinecone. If not, you can later call `update_embeddings()` to create & index them.
- `index`: Index name for storing the docs and metadata.
- `batch_size`: Number of documents to process at a time. When working with large number of documents,
batching can help to reduce the memory footprint.
- `duplicate_documents`: handle duplicate documents based on parameter options.
Parameter options:
- `"skip"`: Ignore the duplicate documents.
- `"overwrite"`: Update any existing documents with the same ID when adding documents.
- `"fail"`: An error is raised if the document ID of the document being added already exists.
- `headers`: PineconeDocumentStore does not support headers.

**Raises**:

- `DuplicateDocumentError`: Exception trigger on duplicate document.

<a id="pinecone.PineconeDocumentStore.update_embeddings"></a>

#### update\_embeddings

```python
def update_embeddings(retriever: "BaseRetriever", index: Optional[str] = None, update_existing_embeddings: bool = True, filters: Optional[Dict[str, Union[Dict, List, str, int, float, bool]]] = None, batch_size: int = 32)
```

Updates the embeddings in the document store using the encoding model specified in the retriever.

This can be useful if you want to add or change the embeddings for your documents (e.g. after changing the
retriever config).

**Arguments**:

- `retriever`: Retriever to use to get embeddings for text.
- `index`: Index name for which embeddings are to be updated. If set to `None`, the default `self.index` is
used.
- `update_existing_embeddings`: Whether to update existing embeddings of the documents. If set to `False`,
only documents without embeddings are processed. This mode can be used for incremental updating of
embeddings, wherein, only newly indexed documents get processed.
- `filters`: Optional filters to narrow down the documents for which embeddings are to be updated.
Filters are defined as nested dictionaries. The keys of the dictionaries can be a logical
operator (`"$and"`, `"$or"`, `"$not"`), a comparison operator (`"$eq"`, `"$in"`, `"$gt"`,
`"$gte"`, `"$lt"`, `"$lte"`) or a metadata field name.
Logical operator keys take a dictionary of metadata field names and/or logical operators as
value. Metadata field names take a dictionary of comparison operators as value. Comparison
operator keys take a single value or (in case of `"$in"`) a list of values as value.
If no logical operator is provided, `"$and"` is used as default operation. If no comparison
operator is provided, `"$eq"` (or `"$in"` if the comparison value is a list) is used as default
operation.
__Example__:
```python
filters = {
"$and": {
"type": {"$eq": "article"},
"date": {"$gte": "2015-01-01", "$lt": "2021-01-01"},
"rating": {"$gte": 3},
"$or": {
"genre": {"$in": ["economy", "politics"]},
"publisher": {"$eq": "nytimes"}
}
}
}
```
- `batch_size`: Number of documents to process at a time. When working with large number of documents,
batching can help reduce memory footprint.

<a id="pinecone.PineconeDocumentStore.get_all_documents_generator"></a>

#### get\_all\_documents\_generator

```python
def get_all_documents_generator(index: Optional[str] = None, filters: Optional[Dict[str, Union[Dict, List, str, int, float, bool]]] = None, return_embedding: Optional[bool] = None, batch_size: int = 32, headers: Optional[Dict[str, str]] = None) -> Generator[Document, None, None]
```

Get all documents from the document store. Under-the-hood, documents are fetched in batches from the

document store and yielded as individual documents. This method can be used to iteratively process
a large number of documents without having to load all documents in memory.

**Arguments**:

- `index`: Name of the index to get the documents from. If None, the
DocumentStore's default index (self.index) will be used.
- `filters`: Optional filters to narrow down the documents for which embeddings are to be updated.
Filters are defined as nested dictionaries. The keys of the dictionaries can be a logical
operator (`"$and"`, `"$or"`, `"$not"`), a comparison operator (`"$eq"`, `"$in"`, `"$gt"`,
`"$gte"`, `"$lt"`, `"$lte"`) or a metadata field name.
Logical operator keys take a dictionary of metadata field names and/or logical operators as
value. Metadata field names take a dictionary of comparison operators as value. Comparison
operator keys take a single value or (in case of `"$in"`) a list of values as value.
If no logical operator is provided, `"$and"` is used as default operation. If no comparison
operator is provided, `"$eq"` (or `"$in"` if the comparison value is a list) is used as default
operation.
__Example__:
```python
filters = {
"$and": {
"type": {"$eq": "article"},
"date": {"$gte": "2015-01-01", "$lt": "2021-01-01"},
"rating": {"$gte": 3},
"$or": {
"genre": {"$in": ["economy", "politics"]},
"publisher": {"$eq": "nytimes"}
}
}
}
```
- `return_embedding`: Whether to return the document embeddings.
- `batch_size`: When working with large number of documents, batching can help reduce memory footprint.
- `headers`: PineconeDocumentStore does not support headers.

<a id="pinecone.PineconeDocumentStore.get_embedding_count"></a>

#### get\_embedding\_count

```python
def get_embedding_count(index: Optional[str] = None, filters: Optional[Dict[str, Union[Dict, List, str, int, float, bool]]] = None) -> int
```

Return the count of embeddings in the document store.

<a id="pinecone.PineconeDocumentStore.update_document_meta"></a>

#### update\_document\_meta

```python
def update_document_meta(id: str, meta: Dict[str, str], index: str = None)
```

Update the metadata dictionary of a document by specifying its string id

<a id="pinecone.PineconeDocumentStore.delete_documents"></a>

#### delete\_documents

```python
def delete_documents(index: Optional[str] = None, ids: Optional[List[str]] = None, filters: Optional[Dict[str, Union[Dict, List, str, int, float, bool]]] = None, headers: Optional[Dict[str, str]] = None)
```

Delete documents from the document store.

**Arguments**:

- `index`: Index name to delete the documents from. If `None`, the DocumentStore's default index
(`self.index`) will be used.
- `ids`: Optional list of IDs to narrow down the documents to be deleted.
- `filters`: Optional filters to narrow down the documents for which embeddings are to be updated.
Filters are defined as nested dictionaries. The keys of the dictionaries can be a logical
operator (`"$and"`, `"$or"`, `"$not"`), a comparison operator (`"$eq"`, `"$in"`, `"$gt"`,
`"$gte"`, `"$lt"`, `"$lte"`) or a metadata field name.
Logical operator keys take a dictionary of metadata field names and/or logical operators as
value. Metadata field names take a dictionary of comparison operators as value. Comparison
operator keys take a single value or (in case of `"$in"`) a list of values as value.
If no logical operator is provided, `"$and"` is used as default operation. If no comparison
operator is provided, `"$eq"` (or `"$in"` if the comparison value is a list) is used as default
operation.
__Example__:
```python
filters = {
"$and": {
"type": {"$eq": "article"},
"date": {"$gte": "2015-01-01", "$lt": "2021-01-01"},
"rating": {"$gte": 3},
"$or": {
"genre": {"$in": ["economy", "politics"]},
"publisher": {"$eq": "nytimes"}
}
}
}
```
- `headers`: PineconeDocumentStore does not support headers.

<a id="pinecone.PineconeDocumentStore.query_by_embedding"></a>

#### query\_by\_embedding

```python
def query_by_embedding(query_emb: np.ndarray, filters: Optional[Dict[str, Union[Dict, List, str, int, float, bool]]] = None, top_k: int = 10, index: Optional[str] = None, return_embedding: Optional[bool] = None, headers: Optional[Dict[str, str]] = None) -> List[Document]
```

Find the document that is most similar to the provided `query_emb` by using a vector similarity metric.

**Arguments**:

- `query_emb`: Embedding of the query (e.g. gathered from DPR).
- `filters`: Optional filters to narrow down the search space to documents whose metadata fulfill certain
conditions.
Filters are defined as nested dictionaries. The keys of the dictionaries can be a logical
operator (`"$and"`, `"$or"`, `"$not"`), a comparison operator (`"$eq"`, `"$in"`, `"$gt"`,
`"$gte"`, `"$lt"`, `"$lte"`) or a metadata field name.
Logical operator keys take a dictionary of metadata field names and/or logical operators as
value. Metadata field names take a dictionary of comparison operators as value. Comparison
operator keys take a single value or (in case of `"$in"`) a list of values as value.
If no logical operator is provided, `"$and"` is used as default operation. If no comparison
operator is provided, `"$eq"` (or `"$in"` if the comparison value is a list) is used as default
operation.
__Example__:
```python
filters = {
"$and": {
"type": {"$eq": "article"},
"date": {"$gte": "2015-01-01", "$lt": "2021-01-01"},
"rating": {"$gte": 3},
"$or": {
"genre": {"$in": ["economy", "politics"]},
"publisher": {"$eq": "nytimes"}
}
}
}
# or simpler using default operators
filters = {
"type": "article",
"date": {"$gte": "2015-01-01", "$lt": "2021-01-01"},
"rating": {"$gte": 3},
"$or": {
"genre": ["economy", "politics"],
"publisher": "nytimes"
}
}
```
To use the same logical operator multiple times on the same level, logical operators take
optionally a list of dictionaries as value.
__Example__:
```python
filters = {
"$or": [
{
"$and": {
"Type": "News Paper",
"Date": {
"$lt": "2019-01-01"
}
}
},
{
"$and": {
"Type": "Blog Post",
"Date": {
"$gte": "2019-01-01"
}
}
}
]
}
```
- `top_k`: How many documents to return.
- `index`: The name of the index from which to retrieve documents.
- `return_embedding`: Whether to return document embedding.
- `headers`: PineconeDocumentStore does not support headers.

<a id="pinecone.PineconeDocumentStore.load"></a>

#### load

```python
@classmethod
def load(cls)
```

Default class method used for loading indexes. Not applicable to the PineconeDocumentStore.

<a id="utils"></a>

# Module utils
Expand Down
2 changes: 1 addition & 1 deletion docs/_src/api/pydoc/document-store.yml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
loaders:
- type: python
search_path: [../../../../haystack/document_stores]
modules: ['base', 'elasticsearch', 'memory', 'sql', 'faiss', 'milvus1', 'milvus2', 'weaviate', 'graphdb', 'deepsetcloud', 'utils']
modules: ['base', 'elasticsearch', 'memory', 'sql', 'faiss', 'milvus1', 'milvus2', 'weaviate', 'graphdb', 'deepsetcloud', 'pinecone', 'utils']
ignore_when_discovered: ['__init__']
processors:
- type: filter
Expand Down
Loading

0 comments on commit 8cd73a9

Please sign in to comment.