-
Notifications
You must be signed in to change notification settings - Fork 2k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'main' into add-recursive-chunking
- Loading branch information
Showing
9 changed files
with
329 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -16,6 +16,7 @@ loaders: | |
"pypdf", | ||
"tika", | ||
"txt", | ||
"xlsx", | ||
] | ||
ignore_when_discovered: ["__init__"] | ||
processors: | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,180 @@ | ||
# SPDX-FileCopyrightText: 2022-present deepset GmbH <[email protected]> | ||
# | ||
# SPDX-License-Identifier: Apache-2.0 | ||
|
||
import io | ||
from pathlib import Path | ||
from typing import Any, Dict, List, Literal, Optional, Tuple, Union | ||
|
||
import pandas as pd | ||
|
||
from haystack import Document, component, logging | ||
from haystack.components.converters.utils import get_bytestream_from_source, normalize_metadata | ||
from haystack.dataclasses import ByteStream | ||
from haystack.lazy_imports import LazyImport | ||
|
||
logger = logging.getLogger(__name__) | ||
|
||
with LazyImport("Run 'pip install openpyxl'") as xlsx_import: | ||
import openpyxl # pylint: disable=unused-import # the library is used but not directly referenced | ||
|
||
with LazyImport("Run 'pip install tabulate'") as tabulate_import: | ||
from tabulate import tabulate # pylint: disable=unused-import # the library is used but not directly referenced | ||
|
||
|
||
@component | ||
class XLSXToDocument: | ||
""" | ||
Converts XLSX (Excel) files into Documents. | ||
Supports reading data from specific sheets or all sheets in the Excel file. If all sheets are read, a Document is | ||
created for each sheet. The content of the Document is the table which can be saved in CSV or Markdown format. | ||
### Usage example | ||
```python | ||
from haystack.components.converters.xlsx import XLSXToDocument | ||
converter = XLSXToDocument() | ||
results = converter.run(sources=["sample.xlsx"], meta={"date_added": datetime.now().isoformat()}) | ||
documents = results["documents"] | ||
print(documents[0].content) | ||
# ",A,B\n1,col_a,col_b\n2,1.5,test\n" | ||
``` | ||
""" | ||
|
||
def __init__( | ||
self, | ||
table_format: Literal["csv", "markdown"] = "csv", | ||
sheet_name: Union[str, int, List[Union[str, int]], None] = None, | ||
read_excel_kwargs: Optional[Dict[str, Any]] = None, | ||
table_format_kwargs: Optional[Dict[str, Any]] = None, | ||
): | ||
""" | ||
Creates a XLSXToDocument component. | ||
:param table_format: The format to convert the Excel file to. | ||
:param sheet_name: The name of the sheet to read. If None, all sheets are read. | ||
:param read_excel_kwargs: Additional arguments to pass to `pandas.read_excel`. | ||
See https://pandas.pydata.org/docs/reference/api/pandas.read_excel.html#pandas-read-excel | ||
:param table_format_kwargs: Additional keyword arguments to pass to the table format function. | ||
- If `table_format` is "csv", these arguments are passed to `pandas.DataFrame.to_csv`. | ||
See https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_csv.html#pandas-dataframe-to-csv | ||
- If `table_format` is "markdown", these arguments are passed to `pandas.DataFrame.to_markdown`. | ||
See https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.to_markdown.html#pandas-dataframe-to-markdown | ||
""" | ||
xlsx_import.check() | ||
self.table_format = table_format | ||
if table_format not in ["csv", "markdown"]: | ||
raise ValueError(f"Unsupported export format: {table_format}. Choose either 'csv' or 'markdown'.") | ||
if table_format == "markdown": | ||
tabulate_import.check() | ||
self.sheet_name = sheet_name | ||
self.read_excel_kwargs = read_excel_kwargs or {} | ||
self.table_format_kwargs = table_format_kwargs or {} | ||
|
||
@component.output_types(documents=List[Document]) | ||
def run( | ||
self, | ||
sources: List[Union[str, Path, ByteStream]], | ||
meta: Optional[Union[Dict[str, Any], List[Dict[str, Any]]]] = None, | ||
) -> Dict[str, List[Document]]: | ||
""" | ||
Converts a XLSX file to a Document. | ||
:param sources: | ||
List of file paths or ByteStream objects. | ||
:param meta: | ||
Optional metadata to attach to the documents. | ||
This value can be either a list of dictionaries or a single dictionary. | ||
If it's a single dictionary, its content is added to the metadata of all produced documents. | ||
If it's a list, the length of the list must match the number of sources, because the two lists will | ||
be zipped. | ||
If `sources` contains ByteStream objects, their `meta` will be added to the output documents. | ||
:returns: | ||
A dictionary with the following keys: | ||
- `documents`: Created documents | ||
""" | ||
documents = [] | ||
|
||
meta_list = normalize_metadata(meta, sources_count=len(sources)) | ||
|
||
for source, metadata in zip(sources, meta_list): | ||
try: | ||
bytestream = get_bytestream_from_source(source) | ||
except Exception as e: | ||
logger.warning("Could not read {source}. Skipping it. Error: {error}", source=source, error=e) | ||
continue | ||
|
||
try: | ||
tables, tables_metadata = self._extract_tables(bytestream) | ||
except Exception as e: | ||
logger.warning( | ||
"Could not read {source} and convert it to a Document, skipping. Error: {error}", | ||
source=source, | ||
error=e, | ||
) | ||
continue | ||
|
||
# Loop over tables and create a Document for each table | ||
for table, excel_metadata in zip(tables, tables_metadata): | ||
merged_metadata = {**bytestream.meta, **metadata, **excel_metadata} | ||
document = Document(content=table, meta=merged_metadata) | ||
documents.append(document) | ||
|
||
return {"documents": documents} | ||
|
||
@staticmethod | ||
def _generate_excel_column_names(n_cols: int) -> List[str]: | ||
result = [] | ||
for i in range(n_cols): | ||
col_name = "" | ||
num = i | ||
while num >= 0: | ||
col_name = chr(num % 26 + 65) + col_name | ||
num = num // 26 - 1 | ||
result.append(col_name) | ||
return result | ||
|
||
def _extract_tables(self, bytestream: ByteStream) -> Tuple[List[str], List[Dict]]: | ||
""" | ||
Extract tables from a Excel file. | ||
""" | ||
resolved_read_excel_kwargs = { | ||
**self.read_excel_kwargs, | ||
"sheet_name": self.sheet_name, | ||
"header": None, # Don't assign any pandas column labels | ||
"engine": "openpyxl", # Use openpyxl as the engine to read the Excel file | ||
} | ||
sheet_to_dataframe = pd.read_excel(io=io.BytesIO(bytestream.data), **resolved_read_excel_kwargs) | ||
if isinstance(sheet_to_dataframe, pd.DataFrame): | ||
sheet_to_dataframe = {self.sheet_name: sheet_to_dataframe} | ||
|
||
updated_sheet_to_dataframe = {} | ||
for key in sheet_to_dataframe: | ||
df = sheet_to_dataframe[key] | ||
# Row starts at 1 in Excel | ||
df.index = df.index + 1 | ||
# Excel column names are Alphabet Characters | ||
header = self._generate_excel_column_names(df.shape[1]) | ||
df.columns = header | ||
updated_sheet_to_dataframe[key] = df | ||
|
||
tables = [] | ||
metadata = [] | ||
for key, value in updated_sheet_to_dataframe.items(): | ||
if self.table_format == "csv": | ||
resolved_kwargs = {"index": True, "header": True, "lineterminator": "\n", **self.table_format_kwargs} | ||
tables.append(value.to_csv(**resolved_kwargs)) | ||
else: | ||
resolved_kwargs = { | ||
"index": True, | ||
"headers": value.columns, | ||
"tablefmt": "pipe", | ||
**self.table_format_kwargs, | ||
} | ||
# to_markdown uses tabulate | ||
tables.append(value.to_markdown(**resolved_kwargs)) | ||
# add sheet_name to metadata | ||
metadata.append({"xlsx": {"sheet_name": key}}) | ||
return tables, metadata |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
4 changes: 4 additions & 0 deletions
4
releasenotes/notes/add-excel-to-document-converter-1920c9f9902ddf17.yaml
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,4 @@ | ||
--- | ||
features: | ||
- | | ||
Add XLSXToDocument converter that loads an Excel file using Pandas + openpyxl and by default converts each sheet into a separate Document in a CSV format. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,139 @@ | ||
import logging | ||
from typing import Union | ||
|
||
import pytest | ||
|
||
from haystack.components.converters.xlsx import XLSXToDocument | ||
|
||
|
||
class TestXLSXToDocument: | ||
def test_init(self) -> None: | ||
converter = XLSXToDocument() | ||
assert converter.sheet_name is None | ||
assert converter.read_excel_kwargs == {} | ||
assert converter.table_format == "csv" | ||
assert converter.table_format_kwargs == {} | ||
|
||
def test_run_basic_tables(self, test_files_path) -> None: | ||
converter = XLSXToDocument() | ||
paths = [test_files_path / "xlsx" / "basic_tables_two_sheets.xlsx"] | ||
results = converter.run(sources=paths, meta={"date_added": "2022-01-01T00:00:00"}) | ||
documents = results["documents"] | ||
assert len(documents) == 2 | ||
assert documents[0].content == ",A,B\n1,col_a,col_b\n2,1.5,test\n" | ||
assert documents[0].meta == { | ||
"date_added": "2022-01-01T00:00:00", | ||
"file_path": str(test_files_path / "xlsx" / "basic_tables_two_sheets.xlsx"), | ||
"xlsx": {"sheet_name": "Basic Table"}, | ||
} | ||
assert documents[1].content == ",A,B\n1,col_c,col_d\n2,True,\n" | ||
assert documents[1].meta == { | ||
"date_added": "2022-01-01T00:00:00", | ||
"file_path": str(test_files_path / "xlsx" / "basic_tables_two_sheets.xlsx"), | ||
"xlsx": {"sheet_name": "Table Missing Value"}, | ||
} | ||
|
||
def test_run_table_empty_rows_and_columns(self, test_files_path) -> None: | ||
converter = XLSXToDocument() | ||
paths = [test_files_path / "xlsx" / "table_empty_rows_and_columns.xlsx"] | ||
results = converter.run(sources=paths, meta={"date_added": "2022-01-01T00:00:00"}) | ||
documents = results["documents"] | ||
assert len(documents) == 1 | ||
assert documents[0].content == ",A,B,C\n1,,,\n2,,,\n3,,,\n4,,col_a,col_b\n5,,1.5,test\n" | ||
assert documents[0].meta == { | ||
"date_added": "2022-01-01T00:00:00", | ||
"file_path": str(test_files_path / "xlsx" / "table_empty_rows_and_columns.xlsx"), | ||
"xlsx": {"sheet_name": "Sheet1"}, | ||
} | ||
|
||
def test_run_multiple_tables_in_one_sheet(self, test_files_path) -> None: | ||
converter = XLSXToDocument() | ||
paths = [test_files_path / "xlsx" / "multiple_tables.xlsx"] | ||
results = converter.run(sources=paths, meta={"date_added": "2022-01-01T00:00:00"}) | ||
documents = results["documents"] | ||
assert len(documents) == 1 | ||
assert ( | ||
documents[0].content | ||
== ",A,B,C,D,E,F\n1,,,,,,\n2,,,,,,\n3,,col_a,col_b,,,\n4,,1.5,test,,col_c,col_d\n5,,,,,3,True\n" | ||
) | ||
assert documents[0].meta == { | ||
"date_added": "2022-01-01T00:00:00", | ||
"file_path": str(test_files_path / "xlsx" / "multiple_tables.xlsx"), | ||
"xlsx": {"sheet_name": "Sheet1"}, | ||
} | ||
|
||
def test_run_markdown(self, test_files_path) -> None: | ||
converter = XLSXToDocument(table_format="markdown") | ||
paths = [test_files_path / "xlsx" / "basic_tables_two_sheets.xlsx"] | ||
results = converter.run(sources=paths, meta={"date_added": "2022-01-01T00:00:00"}) | ||
documents = results["documents"] | ||
assert len(documents) == 2 | ||
assert ( | ||
documents[0].content | ||
== "| | A | B |\n|---:|:------|:------|\n| 1 | col_a | col_b |\n| 2 | 1.5 | test |" | ||
) | ||
assert documents[0].meta == { | ||
"date_added": "2022-01-01T00:00:00", | ||
"file_path": str(test_files_path / "xlsx" / "basic_tables_two_sheets.xlsx"), | ||
"xlsx": {"sheet_name": "Basic Table"}, | ||
} | ||
assert ( | ||
documents[1].content | ||
== "| | A | B |\n|---:|:------|:------|\n| 1 | col_c | col_d |\n| 2 | True | nan |" | ||
) | ||
assert documents[1].meta == { | ||
"date_added": "2022-01-01T00:00:00", | ||
"file_path": str(test_files_path / "xlsx" / "basic_tables_two_sheets.xlsx"), | ||
"xlsx": {"sheet_name": "Table Missing Value"}, | ||
} | ||
|
||
@pytest.mark.parametrize( | ||
"sheet_name, expected_sheet_name, expected_content", | ||
[ | ||
("Basic Table", "Basic Table", ",A,B\n1,col_a,col_b\n2,1.5,test\n"), | ||
("Table Missing Value", "Table Missing Value", ",A,B\n1,col_c,col_d\n2,True,\n"), | ||
(0, 0, ",A,B\n1,col_a,col_b\n2,1.5,test\n"), | ||
(1, 1, ",A,B\n1,col_c,col_d\n2,True,\n"), | ||
], | ||
) | ||
def test_run_sheet_name( | ||
self, sheet_name: Union[int, str], expected_sheet_name: str, expected_content: str, test_files_path | ||
) -> None: | ||
converter = XLSXToDocument(sheet_name=sheet_name) | ||
paths = [test_files_path / "xlsx" / "basic_tables_two_sheets.xlsx"] | ||
results = converter.run(sources=paths) | ||
documents = results["documents"] | ||
assert len(documents) == 1 | ||
assert documents[0].content == expected_content | ||
assert documents[0].meta == { | ||
"file_path": str(test_files_path / "xlsx" / "basic_tables_two_sheets.xlsx"), | ||
"xlsx": {"sheet_name": expected_sheet_name}, | ||
} | ||
|
||
def test_run_with_read_excel_kwargs(self, test_files_path) -> None: | ||
converter = XLSXToDocument(sheet_name="Basic Table", read_excel_kwargs={"skiprows": 1}) | ||
paths = [test_files_path / "xlsx" / "basic_tables_two_sheets.xlsx"] | ||
results = converter.run(sources=paths, meta={"date_added": "2022-01-01T00:00:00"}) | ||
documents = results["documents"] | ||
assert len(documents) == 1 | ||
assert documents[0].content == ",A,B\n1,1.5,test\n" | ||
assert documents[0].meta == { | ||
"date_added": "2022-01-01T00:00:00", | ||
"file_path": str(test_files_path / "xlsx" / "basic_tables_two_sheets.xlsx"), | ||
"xlsx": {"sheet_name": "Basic Table"}, | ||
} | ||
|
||
def test_run_error_wrong_file_type(self, caplog: pytest.LogCaptureFixture, test_files_path) -> None: | ||
converter = XLSXToDocument() | ||
sources = [test_files_path / "pdf" / "sample_pdf_1.pdf"] | ||
with caplog.at_level(logging.WARNING): | ||
results = converter.run(sources=sources) | ||
assert "sample_pdf_1.pdf and convert it" in caplog.text | ||
assert results["documents"] == [] | ||
|
||
def test_run_error_non_existent_file(self, caplog: pytest.LogCaptureFixture) -> None: | ||
converter = XLSXToDocument() | ||
paths = ["non_existing_file.docx"] | ||
with caplog.at_level(logging.WARNING): | ||
converter.run(sources=paths) | ||
assert "Could not read non_existing_file.docx" in caplog.text |
Binary file not shown.
Binary file not shown.
Binary file not shown.