Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

fix(pt/dp): share params of repinit_three_body #4139

Merged
merged 1 commit into from
Sep 19, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 10 additions & 2 deletions deepmd/dpmodel/descriptor/dpa2.py
Original file line number Diff line number Diff line change
Expand Up @@ -733,16 +733,24 @@ def set_stat_mean_and_stddev(
stddev: List[np.ndarray],
) -> None:
"""Update mean and stddev for descriptor."""
for ii, descrpt in enumerate([self.repinit, self.repformers]):
descrpt_list = [self.repinit, self.repformers]
if self.use_three_body:
descrpt_list.append(self.repinit_three_body)
for ii, descrpt in enumerate(descrpt_list):
descrpt.mean = mean[ii]
descrpt.stddev = stddev[ii]

def get_stat_mean_and_stddev(self) -> Tuple[List[np.ndarray], List[np.ndarray]]:
"""Get mean and stddev for descriptor."""
return [self.repinit.mean, self.repformers.mean], [
mean_list = [self.repinit.mean, self.repformers.mean]
stddev_list = [
self.repinit.stddev,
self.repformers.stddev,
]
if self.use_three_body:
mean_list.append(self.repinit_three_body.mean)
stddev_list.append(self.repinit_three_body.stddev)
return mean_list, stddev_list

def call(
self,
Expand Down
25 changes: 22 additions & 3 deletions deepmd/pt/model/descriptor/dpa2.py
Original file line number Diff line number Diff line change
Expand Up @@ -389,6 +389,10 @@ def share_params(self, base_class, shared_level, resume=False):
if shared_level == 0:
self._modules["type_embedding"] = base_class._modules["type_embedding"]
self.repinit.share_params(base_class.repinit, 0, resume=resume)
if self.use_three_body:
self.repinit_three_body.share_params(
base_class.repinit_three_body, 0, resume=resume
)
self._modules["g1_shape_tranform"] = base_class._modules[
"g1_shape_tranform"
]
Expand All @@ -398,6 +402,10 @@ def share_params(self, base_class, shared_level, resume=False):
elif shared_level == 1:
self._modules["type_embedding"] = base_class._modules["type_embedding"]
self.repinit.share_params(base_class.repinit, 0, resume=resume)
if self.use_three_body:
self.repinit_three_body.share_params(
base_class.repinit_three_body, 0, resume=resume
)
# shared_level: 2
# share all parameters in type_embedding and repformers
elif shared_level == 2:
Expand Down Expand Up @@ -499,7 +507,10 @@ def compute_input_stats(
The path to the stat file.

"""
for ii, descrpt in enumerate([self.repinit, self.repformers]):
descrpt_list = [self.repinit, self.repformers]
if self.use_three_body:
descrpt_list.append(self.repinit_three_body)
for ii, descrpt in enumerate(descrpt_list):
descrpt.compute_input_stats(merged, path)

def set_stat_mean_and_stddev(
Expand All @@ -508,16 +519,24 @@ def set_stat_mean_and_stddev(
stddev: List[torch.Tensor],
) -> None:
"""Update mean and stddev for descriptor."""
for ii, descrpt in enumerate([self.repinit, self.repformers]):
descrpt_list = [self.repinit, self.repformers]
if self.use_three_body:
descrpt_list.append(self.repinit_three_body)
for ii, descrpt in enumerate(descrpt_list):
descrpt.mean = mean[ii]
descrpt.stddev = stddev[ii]

def get_stat_mean_and_stddev(self) -> Tuple[List[torch.Tensor], List[torch.Tensor]]:
"""Get mean and stddev for descriptor."""
return [self.repinit.mean, self.repformers.mean], [
mean_list = [self.repinit.mean, self.repformers.mean]
stddev_list = [
self.repinit.stddev,
self.repformers.stddev,
]
if self.use_three_body:
mean_list.append(self.repinit_three_body.mean)
stddev_list.append(self.repinit_three_body.stddev)
return mean_list, stddev_list

def serialize(self) -> dict:
repinit = self.repinit
Expand Down
52 changes: 52 additions & 0 deletions source/tests/pt/model/test_permutation.py
Original file line number Diff line number Diff line change
Expand Up @@ -164,6 +164,58 @@
},
}

model_dpa2tebd = {
"type_map": ["O", "H", "B"],
"descriptor": {
"type": "dpa2",
"repinit": {
"rcut": 6.0,
"rcut_smth": 0.5,
"nsel": 100,
"neuron": [2, 4, 8],
"axis_neuron": 4,
"activation_function": "tanh",
"three_body_sel": 40,
"three_body_rcut": 4.0,
"three_body_rcut_smth": 3.5,
"use_three_body": True,
},
"repformer": {
"rcut": 4.0,
"rcut_smth": 0.5,
"nsel": 40,
"nlayers": 6,
"g1_dim": 8,
"g2_dim": 5,
"attn2_hidden": 3,
"attn2_nhead": 1,
"attn1_hidden": 5,
"attn1_nhead": 1,
"axis_neuron": 4,
"update_h2": False,
"update_g1_has_conv": True,
"update_g1_has_grrg": True,
"update_g1_has_drrd": True,
"update_g1_has_attn": False,
"update_g2_has_g1g1": False,
"update_g2_has_attn": True,
"update_style": "res_residual",
"update_residual": 0.01,
"update_residual_init": "norm",
"attn2_has_gate": True,
"use_sqrt_nnei": True,
"g1_out_conv": True,
"g1_out_mlp": True,
},
"add_tebd_to_repinit_out": False,
},
"fitting_net": {
"neuron": [24, 24],
"resnet_dt": True,
"seed": 1,
},
}

model_dpa1 = {
"type_map": ["O", "H", "B"],
"descriptor": {
Expand Down
40 changes: 40 additions & 0 deletions source/tests/pt/test_multitask.py
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,7 @@
from .model.test_permutation import (
model_dpa1,
model_dpa2,
model_dpa2tebd,
model_se_e2_a,
)

Expand Down Expand Up @@ -300,5 +301,44 @@ def tearDown(self) -> None:
MultiTaskTrainTest.tearDown(self)


class TestMultiTaskDPA2Tebd(unittest.TestCase, MultiTaskTrainTest):
def setUp(self):
multitask_DPA2 = deepcopy(multitask_template)
multitask_DPA2["model"]["shared_dict"]["my_descriptor"] = model_dpa2tebd[
"descriptor"
]
data_file = [str(Path(__file__).parent / "water/data/data_0")]
self.stat_files = "DPA2Tebd"
os.makedirs(self.stat_files, exist_ok=True)
self.config = multitask_DPA2
self.config["training"]["data_dict"]["model_1"]["training_data"]["systems"] = (
data_file
)
self.config["training"]["data_dict"]["model_1"]["validation_data"][
"systems"
] = data_file
self.config["training"]["data_dict"]["model_1"]["stat_file"] = (
f"{self.stat_files}/model_1"
)
self.config["training"]["data_dict"]["model_2"]["training_data"]["systems"] = (
data_file
)
self.config["training"]["data_dict"]["model_2"]["validation_data"][
"systems"
] = data_file
self.config["training"]["data_dict"]["model_2"]["stat_file"] = (
f"{self.stat_files}/model_2"
)
self.config["training"]["numb_steps"] = 1
self.config["training"]["save_freq"] = 1
self.origin_config = deepcopy(self.config)
self.config["model"], self.shared_links = preprocess_shared_params(
self.config["model"]
)

def tearDown(self) -> None:
MultiTaskTrainTest.tearDown(self)


if __name__ == "__main__":
unittest.main()