Skip to content

Commit

Permalink
Feat: add ZBL weighted DP model (#3210)
Browse files Browse the repository at this point in the history
This PR is to implement general linear combination of several
DPAtomicModels with user defined weights, as well as a special case
ZBLModel with weights calculated based on this paper: `Appl. Phys. Lett.
114, 244101 (2019); doi: 10.1063/1.5098061`

---------

Co-authored-by: Anyang Peng <[email protected]>
Co-authored-by: pre-commit-ci[bot] <66853113+pre-commit-ci[bot]@users.noreply.github.com>
Co-authored-by: Han Wang <[email protected]>
Co-authored-by: Han Wang <[email protected]>
  • Loading branch information
5 people authored Feb 8, 2024
1 parent a7153b1 commit b7f1239
Show file tree
Hide file tree
Showing 18 changed files with 2,271 additions and 91 deletions.
300 changes: 300 additions & 0 deletions deepmd/dpmodel/model/linear_atomic_model.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,300 @@
# SPDX-License-Identifier: LGPL-3.0-or-later
import sys
from abc import (
abstractmethod,
)
from typing import (
Dict,
List,
Optional,
Tuple,
Union,
)

import numpy as np

from deepmd.dpmodel import (
FittingOutputDef,
OutputVariableDef,
)
from deepmd.dpmodel.utils.nlist import (
build_multiple_neighbor_list,
get_multiple_nlist_key,
nlist_distinguish_types,
)

from .base_atomic_model import (
BaseAtomicModel,
)
from .dp_atomic_model import (
DPAtomicModel,
)
from .pairtab_atomic_model import (
PairTabModel,
)


class LinearAtomicModel(BaseAtomicModel):
"""Linear model make linear combinations of several existing models.
Parameters
----------
models : list[DPAtomicModel or PairTabModel]
A list of models to be combined. PairTabModel must be used together with a DPAtomicModel.
"""

def __init__(
self,
models: List[BaseAtomicModel],
**kwargs,
):
super().__init__()
self.models = models
self.distinguish_type_list = [
model.distinguish_types() for model in self.models
]

def distinguish_types(self) -> bool:
"""If distinguish different types by sorting."""
return False

def get_rcut(self) -> float:
"""Get the cut-off radius."""
return max(self.get_model_rcuts())

def get_model_rcuts(self) -> List[float]:
"""Get the cut-off radius for each individual models."""
return [model.get_rcut() for model in self.models]

def get_sel(self) -> List[int]:
return [max([model.get_nsel() for model in self.models])]

def get_model_nsels(self) -> List[int]:
"""Get the processed sels for each individual models. Not distinguishing types."""
return [model.get_nsel() for model in self.models]

def get_model_sels(self) -> List[Union[int, List[int]]]:
"""Get the sels for each individual models."""
return [model.get_sel() for model in self.models]

def _sort_rcuts_sels(self) -> Tuple[List[float], List[int]]:
# sort the pair of rcut and sels in ascending order, first based on sel, then on rcut.
zipped = sorted(
zip(self.get_model_rcuts(), self.get_model_nsels()),
key=lambda x: (x[1], x[0]),
)
return [p[0] for p in zipped], [p[1] for p in zipped]

def forward_atomic(
self,
extended_coord,
extended_atype,
nlist,
mapping: Optional[np.ndarray] = None,
fparam: Optional[np.ndarray] = None,
aparam: Optional[np.ndarray] = None,
) -> Dict[str, np.ndarray]:
"""Return atomic prediction.
Parameters
----------
extended_coord
coodinates in extended region, (nframes, nall * 3)
extended_atype
atomic type in extended region, (nframes, nall)
nlist
neighbor list, (nframes, nloc, nsel).
mapping
mapps the extended indices to local indices.
fparam
frame parameter. (nframes, ndf)
aparam
atomic parameter. (nframes, nloc, nda)
Returns
-------
result_dict
the result dict, defined by the fitting net output def.
"""
nframes, nloc, nnei = nlist.shape
extended_coord = extended_coord.reshape(nframes, -1, 3)
sorted_rcuts, sorted_sels = self._sort_rcuts_sels()
nlists = build_multiple_neighbor_list(
extended_coord,
nlist,
sorted_rcuts,
sorted_sels,
)
raw_nlists = [
nlists[get_multiple_nlist_key(rcut, sel)]
for rcut, sel in zip(self.get_model_rcuts(), self.get_model_nsels())
]
nlists_ = [
nl if not dt else nlist_distinguish_types(nl, extended_atype, sel)
for dt, nl, sel in zip(
self.distinguish_type_list, raw_nlists, self.get_model_sels()
)
]
ener_list = [
model.forward_atomic(
extended_coord,
extended_atype,
nl,
mapping,
fparam,
aparam,
)["energy"]
for model, nl in zip(self.models, nlists_)
]
self.weights = self._compute_weight(extended_coord, extended_atype, nlists_)
self.atomic_bias = None
if self.atomic_bias is not None:
raise NotImplementedError("Need to add bias in a future PR.")
else:
fit_ret = {
"energy": np.sum(np.stack(ener_list) * np.stack(self.weights), axis=0),
} # (nframes, nloc, 1)
return fit_ret

def fitting_output_def(self) -> FittingOutputDef:
return FittingOutputDef(
[
OutputVariableDef(
name="energy",
shape=[1],
reduciable=True,
r_differentiable=True,
c_differentiable=True,
)
]
)

@staticmethod
def serialize(models) -> dict:
return {
"models": [model.serialize() for model in models],
"model_name": [model.__class__.__name__ for model in models],
}

@staticmethod
def deserialize(data) -> List[BaseAtomicModel]:
model_names = data["model_name"]
models = [
getattr(sys.modules[__name__], name).deserialize(model)
for name, model in zip(model_names, data["models"])
]
return models

@abstractmethod
def _compute_weight(
self,
extended_coord: np.ndarray,
extended_atype: np.ndarray,
nlists_: List[np.ndarray],
) -> np.ndarray:
"""This should be a list of user defined weights that matches the number of models to be combined."""
raise NotImplementedError


class DPZBLLinearAtomicModel(LinearAtomicModel):
"""Model linearly combine a list of AtomicModels.
Parameters
----------
models
This linear model should take a DPAtomicModel and a PairTable model.
"""

def __init__(
self,
dp_model: DPAtomicModel,
zbl_model: PairTabModel,
sw_rmin: float,
sw_rmax: float,
smin_alpha: Optional[float] = 0.1,
**kwargs,
):
models = [dp_model, zbl_model]
super().__init__(models, **kwargs)
self.dp_model = dp_model
self.zbl_model = zbl_model

self.sw_rmin = sw_rmin
self.sw_rmax = sw_rmax
self.smin_alpha = smin_alpha

def serialize(self) -> dict:
return {
"models": LinearAtomicModel.serialize([self.dp_model, self.zbl_model]),
"sw_rmin": self.sw_rmin,
"sw_rmax": self.sw_rmax,
"smin_alpha": self.smin_alpha,
}

@classmethod
def deserialize(cls, data) -> "DPZBLLinearAtomicModel":
sw_rmin = data["sw_rmin"]
sw_rmax = data["sw_rmax"]
smin_alpha = data["smin_alpha"]

dp_model, zbl_model = LinearAtomicModel.deserialize(data["models"])

return cls(
dp_model=dp_model,
zbl_model=zbl_model,
sw_rmin=sw_rmin,
sw_rmax=sw_rmax,
smin_alpha=smin_alpha,
)

def _compute_weight(
self,
extended_coord: np.ndarray,
extended_atype: np.ndarray,
nlists_: List[np.ndarray],
) -> List[np.ndarray]:
"""ZBL weight.
Returns
-------
List[np.ndarray]
the atomic ZBL weight for interpolation. (nframes, nloc, 1)
"""
assert (
self.sw_rmax > self.sw_rmin
), "The upper boundary `sw_rmax` must be greater than the lower boundary `sw_rmin`."

dp_nlist = nlists_[0]
zbl_nlist = nlists_[1]

zbl_nnei = zbl_nlist.shape[-1]
dp_nnei = dp_nlist.shape[-1]

# use the larger rr based on nlist
nlist_larger = zbl_nlist if zbl_nnei >= dp_nnei else dp_nlist
masked_nlist = np.clip(nlist_larger, 0, None)
pairwise_rr = PairTabModel._get_pairwise_dist(extended_coord, masked_nlist)

numerator = np.sum(
pairwise_rr * np.exp(-pairwise_rr / self.smin_alpha), axis=-1
) # masked nnei will be zero, no need to handle
denominator = np.sum(
np.where(
nlist_larger != -1,
np.exp(-pairwise_rr / self.smin_alpha),
np.zeros_like(nlist_larger),
),
axis=-1,
) # handle masked nnei.
sigma = numerator / denominator
u = (sigma - self.sw_rmin) / (self.sw_rmax - self.sw_rmin)
coef = np.zeros_like(u)
left_mask = sigma < self.sw_rmin
mid_mask = (self.sw_rmin <= sigma) & (sigma < self.sw_rmax)
right_mask = sigma >= self.sw_rmax
coef[left_mask] = 1
smooth = -6 * u**5 + 15 * u**4 - 10 * u**3 + 1
coef[mid_mask] = smooth[mid_mask]
coef[right_mask] = 0
self.zbl_weight = coef
return [1 - np.expand_dims(coef, -1), np.expand_dims(coef, -1)]
Loading

0 comments on commit b7f1239

Please sign in to comment.