-
Notifications
You must be signed in to change notification settings - Fork 516
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(jax): reformat nlist in the TF model
Format the neighbor list in the TF model to convert the dynamic shape to the determined shape, so the TF model can accept the neighbor list with a dynamic shape. Signed-off-by: Jinzhe Zeng <[email protected]>
- Loading branch information
Showing
3 changed files
with
169 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,71 @@ | ||
# SPDX-License-Identifier: LGPL-3.0-or-later | ||
import tensorflow as tf | ||
import tensorflow.experimental.numpy as tnp | ||
|
||
|
||
@tf.function(autograph=True) | ||
def format_nlist( | ||
extended_coord: tnp.ndarray, | ||
nlist: tnp.ndarray, | ||
nsel: int, | ||
rcut: float, | ||
): | ||
"""Format neighbor list. | ||
If nnei == nsel, do nothing; | ||
If nnei < nsel, pad -1; | ||
If nnei > nsel, sort by distance and truncate. | ||
Parameters | ||
---------- | ||
extended_coord | ||
The extended coordinates of the atoms. | ||
shape: nf x nall x 3 | ||
nlist | ||
The neighbor list. | ||
shape: nf x nloc x nnei | ||
nsel | ||
The number of selected neighbors. | ||
rcut | ||
The cutoff radius. | ||
Returns | ||
------- | ||
nlist | ||
The formatted neighbor list. | ||
shape: nf x nloc x nsel | ||
""" | ||
nlist_shape = tf.shape(nlist) | ||
n_nf, n_nloc, n_nsel = nlist_shape[0], nlist_shape[1], nlist_shape[2] | ||
extended_coord = extended_coord.reshape([n_nf, -1, 3]) | ||
|
||
if n_nsel < nsel: | ||
# make a copy before revise | ||
ret = tnp.concatenate( | ||
[ | ||
nlist, | ||
tnp.full([n_nf, n_nloc, nsel - n_nsel], -1, dtype=nlist.dtype), | ||
], | ||
axis=-1, | ||
) | ||
|
||
elif n_nsel > nsel: | ||
# make a copy before revise | ||
m_real_nei = nlist >= 0 | ||
ret = tnp.where(m_real_nei, nlist, 0) | ||
coord0 = extended_coord[:, :n_nloc, :] | ||
index = ret.reshape(n_nf, n_nloc * n_nsel, 1) | ||
index = tnp.repeat(index, 3, axis=2) | ||
coord1 = tnp.take_along_axis(extended_coord, index, axis=1) | ||
coord1 = coord1.reshape(n_nf, n_nloc, n_nsel, 3) | ||
rr2 = tnp.sum(tnp.square(coord0[:, :, None, :] - coord1), axis=-1) | ||
rr2 = tnp.where(m_real_nei, rr2, float("inf")) | ||
rr2, ret_mapping = tnp.sort(rr2, axis=-1), tnp.argsort(rr2, axis=-1) | ||
ret = tnp.take_along_axis(ret, ret_mapping, axis=2) | ||
ret = tnp.where(rr2 > rcut * rcut, -1, ret) | ||
ret = ret[..., :nsel] | ||
else: # n_nsel == nsel: | ||
ret = nlist | ||
# do a reshape any way; this will tell the xla the shape without any dynamic shape | ||
ret = tnp.reshape(ret, [n_nf, n_nloc, nsel]) | ||
return ret | ||
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,91 @@ | ||
# SPDX-License-Identifier: LGPL-3.0-or-later | ||
import tensorflow as tf | ||
import tensorflow.experimental.numpy as tnp | ||
|
||
from deepmd.jax.jax2tf.format_nlist import ( | ||
format_nlist, | ||
) | ||
from deepmd.jax.jax2tf.nlist import ( | ||
build_neighbor_list, | ||
extend_coord_with_ghosts, | ||
) | ||
|
||
GLOBAL_SEED = 20241110 | ||
|
||
|
||
class TestFormatNlist(tf.test.TestCase): | ||
def setUp(self): | ||
self.nf = 3 | ||
self.nloc = 3 | ||
self.ns = 5 * 5 * 3 | ||
self.nall = self.ns * self.nloc | ||
self.cell = tnp.array( | ||
[[[1, 0, 0], [0.4, 0.8, 0], [0.1, 0.3, 2.1]]], dtype=tnp.float64 | ||
) | ||
self.icoord = tnp.array( | ||
[[[0.035, 0.062, 0.064], [0.085, 0.058, 0.021], [0.537, 0.553, 0.124]]], | ||
dtype=tnp.float64, | ||
) | ||
self.atype = tnp.array([[1, 0, 1]], dtype=tnp.int32) | ||
self.nsel = [10, 10] | ||
self.rcut = 1.01 | ||
|
||
self.ecoord, self.eatype, mapping = extend_coord_with_ghosts( | ||
Check notice Code scanning / CodeQL Unused local variable Note test
Variable mapping is not used.
|
||
self.icoord, self.atype, self.cell, self.rcut | ||
) | ||
self.nlist = build_neighbor_list( | ||
self.ecoord, | ||
self.eatype, | ||
self.nloc, | ||
self.rcut, | ||
sum(self.nsel), | ||
distinguish_types=False, | ||
) | ||
|
||
def test_format_nlist_equal(self): | ||
nlist = format_nlist(self.ecoord, self.nlist, sum(self.nsel), self.rcut) | ||
self.assertAllEqual(nlist, self.nlist) | ||
|
||
def test_format_nlist_less(self): | ||
nlist = build_neighbor_list( | ||
self.ecoord, | ||
self.eatype, | ||
self.nloc, | ||
self.rcut, | ||
sum(self.nsel) - 5, | ||
distinguish_types=False, | ||
) | ||
nlist = format_nlist(self.ecoord, nlist, sum(self.nsel), self.rcut) | ||
self.assertAllEqual(nlist, self.nlist) | ||
|
||
def test_format_nlist_large(self): | ||
nlist = build_neighbor_list( | ||
self.ecoord, | ||
self.eatype, | ||
self.nloc, | ||
self.rcut, | ||
sum(self.nsel) + 5, | ||
distinguish_types=False, | ||
) | ||
# random shuffle | ||
shuffle_idx = tf.random.shuffle(tf.range(nlist.shape[2])) | ||
nlist = tnp.take(nlist, shuffle_idx, axis=2) | ||
nlist = format_nlist(self.ecoord, nlist, sum(self.nsel), self.rcut) | ||
# we only need to ensure the result is correct, no need to check the order | ||
self.assertAllEqual(tnp.sort(nlist, axis=-1), tnp.sort(self.nlist, axis=-1)) | ||
|
||
def test_format_nlist_larger_rcut(self): | ||
nlist = build_neighbor_list( | ||
self.ecoord, | ||
self.eatype, | ||
self.nloc, | ||
self.rcut * 2, | ||
40, | ||
distinguish_types=False, | ||
) | ||
# random shuffle | ||
shuffle_idx = tf.random.shuffle(tf.range(nlist.shape[2])) | ||
nlist = tnp.take(nlist, shuffle_idx, axis=2) | ||
nlist = format_nlist(self.ecoord, nlist, sum(self.nsel), self.rcut) | ||
# we only need to ensure the result is correct, no need to check the order | ||
self.assertAllEqual(tnp.sort(nlist, axis=-1), tnp.sort(self.nlist, axis=-1)) |