-
Notifications
You must be signed in to change notification settings - Fork 15
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
期待更强的模型 #1
Comments
好的 感谢感谢
最近时序列这里确实有很多好模型不断涌现,我们小团队自己人数有限,没法能覆盖特别多。
这三篇文章我们会尽快开始加入我们的benchmark,感谢您的支持。
我们这篇工作有幸被CIKM 2021 Resource Track 录用了,
预印版放到了arXiv上面,里面主要整理了一些交通这边的时序列工作,希望对您的研究有帮助。
https://arxiv.org/pdf/2108.09091.pdf <https://arxiv.org/pdf/2108.09091.pdf%0d>
万分感谢!
From: kpmokpmo ***@***.***>
Sent: Monday, August 23, 2021 6:38 PM
To: deepkashiwa20/DL-Traff-Grid ***@***.***>
Cc: Subscribed ***@***.***>
Subject: [deepkashiwa20/DL-Traff-Grid] 期待更强的模型 (#1)
非常感谢你们的工作,很系统并有指导意义,相信持续更新可以做成相关领域的重要指南。根据我个人的经验有几个模型,可能会有更亮眼表现。
1. StemGNN: Spectral Temporal Graph Neural Network for Multivariate Time-series Forecasting
2. TS2VEC:Learning Timestamp-Level Representations for Time Series with Hierarchical Contrastive Loss
3. Query Selector:LONG-TERM SERIES FORECASTING WITH QUERY SELECTOR – EFFICIENT MODEL OF SPARSE ATTENTION
它们主要适用于Graph类的数据集,stemgnn在我的私有数据集上显著优于MTGNN。TS2VEC是multivariates的非监督型的模型,需要调参。Query Selector只是sparse版的transformer,但它自己列的表现较为优秀,优于Informer。如果您对以上三个可能SOTA的候选感兴趣的话不妨实验一下,如果没精力就算了哈:p。
感谢!
—
You are receiving this because you are subscribed to this thread.
Reply to this email directly, view it on GitHub <#1> , or unsubscribe <https://github.com/notifications/unsubscribe-auth/AM5RDG7LMWYDTU56GGZUC3TT6IJG3ANCNFSM5CUF7BHQ> .
Triage notifications on the go with GitHub Mobile for iOS <https://apps.apple.com/app/apple-store/id1477376905?ct=notification-email&mt=8&pt=524675> or Android <https://play.google.com/store/apps/details?id=com.github.android&utm_campaign=notification-email> . <https://github.com/notifications/beacon/AM5RDG3Z2NAJ7CYCPQJD7T3T6IJG3A5CNFSM5CUF7BH2YY3PNVWWK3TUL52HS4DFUVEXG43VMWVGG33NNVSW45C7NFSM4ORZJKKA.gif>
|
谢谢,会持续关注你们的工作,已经watch & star |
Sign up for free
to join this conversation on GitHub.
Already have an account?
Sign in to comment
非常感谢你们的工作,很系统并有指导意义,相信持续更新可以做成相关领域的重要指南。根据我个人的经验有几个模型,可能会有更亮眼表现。
它们主要适用于Graph类的数据集,stemgnn在我的私有数据集上显著优于MTGNN。TS2VEC是multivariates的非监督型的模型,需要调参。Query Selector只是sparse版的transformer,但它自己列的表现较为优秀,优于Informer。如果您对以上三个可能SOTA的候选感兴趣的话不妨实验一下,如果没精力就算了哈:p。
感谢!
The text was updated successfully, but these errors were encountered: