Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

To support Yolov8 #2776

Merged
merged 19 commits into from
Sep 20, 2023
Original file line number Diff line number Diff line change
Expand Up @@ -160,7 +160,7 @@ protected double overlap(double x1, double w1, double x2, double w2) {
return right - left;
}

private DetectedObjects processFromBoxOutput(NDList list) {
protected DetectedObjects processFromBoxOutput(NDList list) {
float[] flattened = list.get(0).toFloatArray();
ArrayList<IntermediateResult> intermediateResults = new ArrayList<>();
int sizeClasses = classes.size();
Expand Down Expand Up @@ -280,7 +280,7 @@ public YoloV5Translator build() {
}
}

private static final class IntermediateResult {
protected static final class IntermediateResult {

/**
* A sortable score for how good the recognition is relative to others. Higher should be
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,103 @@
/*
* Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.modality.cv.translator;

import ai.djl.modality.cv.output.DetectedObjects;
import ai.djl.modality.cv.output.Rectangle;
import ai.djl.ndarray.NDArray;
import ai.djl.ndarray.NDList;
import ai.djl.ndarray.types.DataType;

import java.util.ArrayList;
import java.util.Map;

/**
* A translator for YoloV8 models. This was tested with ONNX exported Yolo models. For details check
* here: https://github.com/ultralytics/ultralytics
*/
public class YoloV8Translator extends YoloV5Translator {

/**
* Constructs an ImageTranslator with the provided builder.
*
* @param builder the data to build with
*/
protected YoloV8Translator(Builder builder) {
super(builder);
}

/**
* Creates a builder to build a {@code YoloV8Translator} with specified arguments.
*
* @param arguments arguments to specify builder options
* @return a new builder
*/
public static YoloV8Translator.Builder builder(Map<String, ?> arguments) {
YoloV8Translator.Builder builder = new YoloV8Translator.Builder();
builder.configPreProcess(arguments);
builder.configPostProcess(arguments);

return builder;
}

@Override
protected DetectedObjects processFromBoxOutput(NDList list) {
KexinFeng marked this conversation as resolved.
Show resolved Hide resolved
NDArray features4OneImg = list.get(0);
int sizeClasses = classes.size();
long sizeBoxes = features4OneImg.size(1);
ArrayList<IntermediateResult> intermediateResults = new ArrayList<>();

for (long b = 0; b < sizeBoxes; b++) {
float maxClass = 0;
int maxIndex = 0;
for (int c = 4; c < sizeClasses; c++) {
float classProb = features4OneImg.getFloat(c, b);
if (classProb > maxClass) {
maxClass = classProb;
maxIndex = c;
}
}

if (maxClass > threshold) {
float xPos = features4OneImg.getFloat(0, b); // center x
float yPos = features4OneImg.getFloat(1, b); // center y
float w = features4OneImg.getFloat(2, b);
float h = features4OneImg.getFloat(3, b);
Rectangle rect =
new Rectangle(Math.max(0, xPos - w / 2), Math.max(0, yPos - h / 2), w, h);
intermediateResults.add(
new IntermediateResult(classes.get(maxIndex), maxClass, maxIndex, rect));
}
}

return nms(intermediateResults);
}

/** The builder for {@link YoloV8Translator}. */
public static class Builder extends YoloV5Translator.Builder {
/**
* Builds the translator.
*
* @return the new translator
*/
@Override
public YoloV8Translator build() {
if (pipeline == null) {
addTransform(
array -> array.transpose(2, 0, 1).toType(DataType.FLOAT32, false).div(255));
}
validate();
return new YoloV8Translator(this);
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,35 @@
/*
* Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.modality.cv.translator;

import ai.djl.Model;
import ai.djl.modality.cv.Image;
import ai.djl.modality.cv.output.DetectedObjects;
import ai.djl.translate.Translator;

import java.io.Serializable;
import java.util.Map;

/** A translatorFactory that creates a {@link YoloV8Translator} instance. */
public class YoloV8TranslatorFactory extends ObjectDetectionTranslatorFactory
implements Serializable {

private static final long serialVersionUID = 1L;

/** {@inheritDoc} */
@Override
protected Translator<Image, DetectedObjects> buildBaseTranslator(
Model model, Map<String, ?> arguments) {
return YoloV8Translator.builder(arguments).build();
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,76 @@
/*
* Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.modality.cv.translator;

import ai.djl.Model;
import ai.djl.modality.Input;
import ai.djl.modality.Output;
import ai.djl.modality.cv.Image;
import ai.djl.modality.cv.output.DetectedObjects;
import ai.djl.translate.BasicTranslator;
import ai.djl.translate.Translator;

import org.testng.Assert;
import org.testng.annotations.BeforeClass;
import org.testng.annotations.Test;

import java.io.InputStream;
import java.net.URL;
import java.nio.file.Path;
import java.util.HashMap;
import java.util.Map;

public class YoloV8TranslatorFactoryTest {

private YoloV8TranslatorFactory factory;

@BeforeClass
public void setUp() {
factory = new YoloV8TranslatorFactory();
}

@Test
public void testGetSupportedTypes() {
Assert.assertEquals(factory.getSupportedTypes().size(), 5);
}

@Test
public void testNewInstance() {
Map<String, String> arguments = new HashMap<>();
try (Model model = Model.newInstance("test")) {
Translator<Image, DetectedObjects> translator1 =
factory.newInstance(Image.class, DetectedObjects.class, model, arguments);
Assert.assertTrue(translator1 instanceof YoloV8Translator);

Translator<Path, DetectedObjects> translator2 =
factory.newInstance(Path.class, DetectedObjects.class, model, arguments);
Assert.assertTrue(translator2 instanceof BasicTranslator);

Translator<URL, DetectedObjects> translator3 =
factory.newInstance(URL.class, DetectedObjects.class, model, arguments);
Assert.assertTrue(translator3 instanceof BasicTranslator);

Translator<InputStream, DetectedObjects> translator4 =
factory.newInstance(InputStream.class, DetectedObjects.class, model, arguments);
Assert.assertTrue(translator4 instanceof BasicTranslator);

Translator<Input, Output> translator5 =
factory.newInstance(Input.class, Output.class, model, arguments);
Assert.assertTrue(translator5 instanceof ImageServingTranslator);

Assert.assertThrows(
IllegalArgumentException.class,
() -> factory.newInstance(Image.class, Output.class, model, arguments));
}
}
}
Original file line number Diff line number Diff line change
@@ -0,0 +1,132 @@
/*
* Copyright 2023 Amazon.com, Inc. or its affiliates. All Rights Reserved.
*
* Licensed under the Apache License, Version 2.0 (the "License"). You may not use this file except in compliance
* with the License. A copy of the License is located at
*
* http://aws.amazon.com/apache2.0/
*
* or in the "license" file accompanying this file. This file is distributed on an "AS IS" BASIS, WITHOUT WARRANTIES
* OR CONDITIONS OF ANY KIND, either express or implied. See the License for the specific language governing permissions
* and limitations under the License.
*/
package ai.djl.examples.inference;

import ai.djl.ModelException;
import ai.djl.inference.Predictor;
import ai.djl.modality.cv.Image;
import ai.djl.modality.cv.ImageFactory;
import ai.djl.modality.cv.output.BoundingBox;
import ai.djl.modality.cv.output.DetectedObjects;
import ai.djl.modality.cv.output.DetectedObjects.DetectedObject;
import ai.djl.modality.cv.output.Rectangle;
import ai.djl.modality.cv.translator.YoloV8TranslatorFactory;
import ai.djl.repository.zoo.Criteria;
import ai.djl.repository.zoo.ZooModel;
import ai.djl.training.util.ProgressBar;
import ai.djl.translate.TranslateException;
import ai.djl.translate.Translator;

import org.slf4j.Logger;
import org.slf4j.LoggerFactory;

import java.io.IOException;
import java.nio.file.Files;
import java.nio.file.Path;
import java.nio.file.Paths;
import java.util.List;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;

/** An example of inference using an yolov8 model. */
public final class Yolov8Detection {

private static final Logger logger = LoggerFactory.getLogger(Yolov8Detection.class);

private Yolov8Detection() {}

public static void main(String[] args) throws IOException, ModelException, TranslateException {
DetectedObjects detection = Yolov8Detection.predict();
logger.info("{}", detection);
}

public static DetectedObjects predict() throws IOException, ModelException, TranslateException {
String classPath = System.getProperty("java.class.path");
String pathSeparator = System.getProperty("path.separator");
classPath = classPath.split(pathSeparator)[0];
Path modelPath = Paths.get(classPath + "/yolov8n.onnx");
Path imgPath = Paths.get(classPath + "/yolov8_test.jpg");
Image img = ImageFactory.getInstance().fromFile(imgPath);

Map<String, Object> arguments = new ConcurrentHashMap<>();
arguments.put("width", 640);
arguments.put("height", 640);
arguments.put("resize", "true");
arguments.put("toTensor", true);
arguments.put("applyRatio", true);
arguments.put("threshold", 0.6f);
arguments.put("synsetFileName", "yolov8_synset.txt");

YoloV8TranslatorFactory yoloV8TranslatorFactory = new YoloV8TranslatorFactory();
Translator<Image, DetectedObjects> translator =
yoloV8TranslatorFactory.newInstance(
Image.class, DetectedObjects.class, null, arguments);

Criteria<Image, DetectedObjects> criteria =
Criteria.builder()
.setTypes(Image.class, DetectedObjects.class)
.optModelPath(modelPath)
.optEngine("OnnxRuntime")
.optTranslator(translator)
.optProgress(new ProgressBar())
.build();

DetectedObjects detectedObjects;
DetectedObject detectedObject;
try (ZooModel<Image, DetectedObjects> model = criteria.loadModel();
Predictor<Image, DetectedObjects> predictor = model.newPredictor()) {
Path outputPath = Paths.get(classPath + "/output");
Files.createDirectories(outputPath);

detectedObjects = predictor.predict(img);

if (detectedObjects.getNumberOfObjects() > 0) {
List<DetectedObject> detectedObjectList = detectedObjects.items();
for (DetectedObject object : detectedObjectList) {
detectedObject = object;
BoundingBox boundingBox = detectedObject.getBoundingBox();
Rectangle tectangle = boundingBox.getBounds();
logger.info(
detectedObject.getClassName()
+ " "
+ detectedObject.getProbability()
+ " "
+ tectangle.getX()
+ " "
+ tectangle.getY()
+ " "
+ tectangle.getWidth()
+ " "
+ tectangle.getHeight());
}

saveBoundingBoxImage(
img.resize(640, 640, false),
detectedObjects,
outputPath,
imgPath.toFile().getName());
}

return detectedObjects;
}
}

private static void saveBoundingBoxImage(
Image img, DetectedObjects detectedObjects, Path outputPath, String outputFileName)
throws IOException {
img.drawBoundingBoxes(detectedObjects);

Path imagePath = outputPath.resolve(outputFileName);
img.save(Files.newOutputStream(imagePath), "png");
}
}
Loading