Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

update reproduce.sh #6

Merged
merged 3 commits into from
Feb 21, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
9 changes: 5 additions & 4 deletions binder/environment.yml
Original file line number Diff line number Diff line change
Expand Up @@ -4,6 +4,7 @@ channels:
dependencies:
- python=3.9
- ipywidgets
- jupyter
- jupyterlab
- matplotlib
- numpy
Expand All @@ -13,8 +14,8 @@ dependencies:
- lxml
- requests
- statsmodels
- pip
- pip:
- pandas-datareader
- fredpy
- statsmodels

- pandas-datareader
- fredpy
- statsmodels
7 changes: 1 addition & 6 deletions code/main/parse_GB_raw_data.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
import pandas as pd
import os

# Load the Excel file
excel_file = pd.ExcelFile('data/raw/GBweb_Row_Format.xlsx')
Expand Down Expand Up @@ -81,10 +80,6 @@
for column in GB_df.columns[1:]:
GB_df[column] = GB_df[column].apply(lambda x: f"{x:.{decimal}f}")

current_directory = os.path.dirname(os.path.abspath(__file__))
file_path = "/../data/output/FRED.csv"
GB_df.to_csv(current_directory + file_path)

# Uncomment these final lines to get the output of your choice
#GB_df.to_csv('data/output/GB.csv')
GB_df.to_csv('data/output/GB.csv')
# GB_df.to_excel('data/output/GB_parsed.xlsx', index=False)
7 changes: 1 addition & 6 deletions code/main/parse_SPF_raw_data.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,4 @@
import pandas as pd
import os

# Load the Excel file with levels first
excel_file = pd.ExcelFile('data/raw/meanLevel.xlsx')
Expand Down Expand Up @@ -69,10 +68,6 @@
for column in results_df.columns[1:]:
results_df[column] = results_df[column].apply(lambda x: f"{x:.{decimal}f}")

current_directory = os.path.dirname(os.path.abspath(__file__))
file_path = "/../data/output/FRED.csv"
results_df.to_csv(current_directory + file_path)

# Uncomment these final lines to get the output of your choice
# results_df.to_csv('data/output/SPF.csv')
results_df.to_csv('data/output/SPF.csv')
# SPF_df.to_excel('data/output/SPF_parsed.xlsx', index=False)
14 changes: 7 additions & 7 deletions code/main/reproduce.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,12 +8,12 @@

# List all files in the current directory
files_to_run = [
"/parse_GB_raw_data.py",
"/parse_SPF_raw_data.py",
"/scrape_FRED_data.py",
"/annual_forecasts.py",
"/compute_abs_error.py",
"/abse_reg.py"
"./code/main/parse_GB_raw_data.py",
"./code/main/parse_SPF_raw_data.py",
"./code/main/scrape_FRED_data.py",
"./code/main/annual_forecasts.py",
"./code/main/compute_abs_error.py",
"./code/main/abse_reg.py"
]

# Measure the start time
Expand All @@ -22,7 +22,7 @@
# Run each Python script in the directory
for python_file in files_to_run:
if python_file != "reproduce.py": # Exclude the launcher script itself
subprocess.run(["python", current_directory + python_file])
subprocess.run(["python", python_file])

end_time = time.time()

Expand Down
7 changes: 1 addition & 6 deletions code/main/scrape_FRED_data.py
Original file line number Diff line number Diff line change
Expand Up @@ -2,7 +2,6 @@
import numpy as np
import fredpy as fp
import matplotlib.pyplot as plt
import os

fp.api_key = "c735c085b4e162a17326871bc1d5c625"
win = ['01-01-1982','12-01-2017']
Expand Down Expand Up @@ -30,10 +29,6 @@
for column in obs_df.columns[1:]:
obs_df[column] = obs_df[column].apply(lambda x: f"{x:.{decimal}f}")

current_directory = os.path.dirname(os.path.abspath(__file__))
file_path = "/../data/output/FRED.csv"
obs_df.to_csv(current_directory + file_path)

#obs_df.to_csv('data/output/FRED.csv')
obs_df.to_csv('data/output/FRED.csv')

# obs_df.to_excel('data/output/FRED_scraped.xlsx', index=False)
2 changes: 1 addition & 1 deletion reproduce.sh
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ SCPT_DIR=$(cd -- "$( dirname -- "${BASH_SOURCE[0]}" )" &> /dev/null && pwd)
cd "$SCPT_DIR"

mamba env update -f binder/environment.yml
conda activate rs100_discussion
source activate rs100_discussion

ipython *.ipynb

Expand Down
12 changes: 6 additions & 6 deletions results/abse_reg_1983.txt
Original file line number Diff line number Diff line change
Expand Up @@ -5,7 +5,7 @@ Dep. Variable: GB_error_unemp R-squared: 0.013
Model: OLS Adj. R-squared: 0.006
Method: Least Squares F-statistic: 1.760
Date: Wed, 21 Feb 2024 Prob (F-statistic): 0.187
Time: 08:35:09 Log-Likelihood: -118.32
Time: 10:04:35 Log-Likelihood: -118.32
No. Observations: 144 AIC: 240.6
Df Residuals: 142 BIC: 246.6
Df Model: 1
Expand All @@ -25,15 +25,15 @@ Kurtosis: 15.518 Cond. No. 10.4
Notes:
[1] Standard Errors are heteroscedasticity robust (HC3)
Mean Squared Error for GB_error_unemp: 0.3028
Durbin-Watson Statistic for GB_error_unemp: 0.4990387828073439
Durbin-Watson Statistic for GB_error_unemp: 0.4990387828073438
Regression Summary for SPF_error_unemp:
OLS Regression Results
==============================================================================
Dep. Variable: SPF_error_unemp R-squared: 0.005
Model: OLS Adj. R-squared: -0.002
Method: Least Squares F-statistic: 0.6700
Date: Wed, 21 Feb 2024 Prob (F-statistic): 0.414
Time: 08:35:09 Log-Likelihood: -125.71
Time: 10:04:35 Log-Likelihood: -125.71
No. Observations: 144 AIC: 255.4
Df Residuals: 142 BIC: 261.4
Df Model: 1
Expand All @@ -53,15 +53,15 @@ Kurtosis: 13.710 Cond. No. 10.4
Notes:
[1] Standard Errors are heteroscedasticity robust (HC3)
Mean Squared Error for SPF_error_unemp: 0.3356
Durbin-Watson Statistic for SPF_error_unemp: 0.380336402078763
Durbin-Watson Statistic for SPF_error_unemp: 0.3803364020787631
Regression Summary for GB_error_cons:
OLS Regression Results
==============================================================================
Dep. Variable: GB_error_cons R-squared: 0.219
Model: OLS Adj. R-squared: 0.214
Method: Least Squares F-statistic: 30.02
Date: Wed, 21 Feb 2024 Prob (F-statistic): 1.89e-07
Time: 08:35:10 Log-Likelihood: -166.53
Time: 10:04:35 Log-Likelihood: -166.53
No. Observations: 144 AIC: 337.1
Df Residuals: 142 BIC: 343.0
Df Model: 1
Expand Down Expand Up @@ -89,7 +89,7 @@ Dep. Variable: SPF_error_cons R-squared: 0.133
Model: OLS Adj. R-squared: 0.127
Method: Least Squares F-statistic: 26.15
Date: Wed, 21 Feb 2024 Prob (F-statistic): 1.01e-06
Time: 08:35:10 Log-Likelihood: -177.99
Time: 10:04:35 Log-Likelihood: -177.99
No. Observations: 144 AIC: 360.0
Df Residuals: 142 BIC: 365.9
Df Model: 1
Expand Down