#为了数学建模学习matlab #第一章线性规划问题(1.线性规划
求线性规划问题的最优解有两种方法,一种方法是使用linprog命令,另一种是使用optimtool工具箱,下面分别介绍这两种方法.
①linprog命令
一般情况下,Linprog命令的参数形式为[x,fval] = linprog(f,A,b,Aeq,beq,lb,ub,x0),下面分别介绍各参数的含义.
[x,fval]返回值中x为最优解,fval为最优值.
f表示目标函数中各个变量前面的系数向量,如果是求最小值问题,那么f就是各个变量的系数,如果是求最大值问题,那么f就是各个变量的系数的相反数.
A和b 表示不等式约束A*x <=b中的矩阵A和向量b.
Aeq和beq 表示等式约束Aeq*x =beq中的矩阵Aeq和向量beq.
lb和ub 分别表示自变量的上下界组成的向量,如果没有上下界,该选项用[]表示,如果只有部分变量有上下界,其余的变量没有,那么可以把没有上下界的变量的上下界设为-inf或者inf使lb或者ub的长度符合要求.https://blog.csdn.net/limin_yu/article/details/80256051) #非线性规划(https://blog.csdn.net/limin_yu/article/details/80257186) #插值:求过已知有限个数据点的近似函数。 拟合:已知有限个数据点,求近似函数,不要求过已知数据点,只要求在某种意义 下它在这些点上的总偏差最小。 插值和拟合都是要根据一组数据构造一个函数作为近似,由于近似的要求不同,二 者的数学方法上是完全不同的。而面对一个实际问题,究竟应该用插值还是拟合,有时 容易确定,有时则并不明显。
§1 插值方法 下面介绍几种基本的、常用的插值:拉格朗日多项式插值、牛顿插值、分段线性插 值、Hermite 插值和三次样条插值。 #微分方程的解法 1--欧拉方法 2--改进的欧拉方法 3--龙格库塔方法