Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat(ingest/unity): capture create/lastModified timestamps #7819

Merged
merged 4 commits into from
Apr 17, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
49 changes: 48 additions & 1 deletion metadata-ingestion/src/datahub/ingestion/source/unity/source.py
Original file line number Diff line number Diff line change
@@ -1,5 +1,6 @@
import logging
import re
import time
from typing import Dict, Iterable, List, Optional

from datahub.emitter.mce_builder import (
Expand Down Expand Up @@ -58,12 +59,15 @@
DatasetPropertiesClass,
DomainsClass,
MySqlDDLClass,
OperationClass,
OperationTypeClass,
OwnerClass,
OwnershipClass,
OwnershipTypeClass,
SchemaFieldClass,
SchemaMetadataClass,
SubTypesClass,
TimeStampClass,
UpstreamClass,
UpstreamLineageClass,
)
Expand Down Expand Up @@ -254,6 +258,7 @@ def process_table(

sub_type = self._create_table_sub_type_aspect(table)
schema_metadata = self._create_schema_metadata_aspect(table)
operation = self._create_table_operation_aspect(table)

domain = self._get_domain_aspect(
dataset_name=str(
Expand All @@ -279,6 +284,7 @@ def process_table(
view_props,
sub_type,
schema_metadata,
operation,
domain,
ownership,
lineage,
Expand Down Expand Up @@ -454,18 +460,59 @@ def _create_table_property_aspect(
custom_properties["created_by"] = table.created_by
custom_properties["created_at"] = str(table.created_at)
if table.properties:
custom_properties["properties"] = str(table.properties)
custom_properties.update({k: str(v) for k, v in table.properties.items()})
custom_properties["table_id"] = table.table_id
custom_properties["owner"] = table.owner
custom_properties["updated_by"] = table.updated_by
custom_properties["updated_at"] = str(table.updated_at)

created = TimeStampClass(
int(table.created_at.timestamp() * 1000), make_user_urn(table.created_by)
)
last_modified = created
if table.updated_at and table.updated_by is not None:
last_modified = TimeStampClass(
int(table.updated_at.timestamp() * 1000),
make_user_urn(table.updated_by),
)

return DatasetPropertiesClass(
name=table.name,
description=table.comment,
customProperties=custom_properties,
created=created,
lastModified=last_modified,
)

def _create_table_operation_aspect(self, table: proxy.Table) -> OperationClass:
"""Produce an operation aspect for a table.

If a last updated time is present, we produce an update operation.
Otherwise, we produce a create operation. We do this in addition to
setting the last updated time in the dataset properties aspect, as
the UI is currently missing the ability to display the last updated
from the properties aspect.
"""

reported_time = int(time.time() * 1000)

operation = OperationClass(
timestampMillis=reported_time,
lastUpdatedTimestamp=int(table.created_at.timestamp() * 1000),
actor=make_user_urn(table.created_by),
operationType=OperationTypeClass.CREATE,
)

if table.updated_at and table.updated_by is not None:
operation = OperationClass(
timestampMillis=reported_time,
lastUpdatedTimestamp=int(table.updated_at.timestamp() * 1000),
actor=make_user_urn(table.updated_by),
operationType=OperationTypeClass.UPDATE,
)

return operation

def _create_table_ownership_aspect(
self, table: proxy.Table
) -> Optional[OwnershipClass]:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -135,7 +135,7 @@ def _default_deserializer(value: Any) -> Any:


@dataclass(eq=False)
class FileBackedDict(MutableMapping[str, _VT], Generic[_VT], Closeable):
class FileBackedDict(MutableMapping[str, _VT], Closeable, Generic[_VT]):
"""
A dict-like object that stores its data in a temporary SQLite database.
This is useful for storing large amounts of data that don't fit in memory.
Expand Down
Loading