Asynchronous pure rust tokio-based Clickhouse client library
development status: alpha
Tested on Linux x86-64 (ubuntu 20.04 LTS), Windows 10.
- To create small and robust driver for Clickhouse, fast open-source column oriented database
- To learn rust concurrency and zero-cost abstraction
- Asynchronous tokio-based engine
- Native Clickhouse protocol
- LZ4 compression
- Persistent connection pool
- Simple row to object mapper
- Date | DateTime | DateTime64- read/write
- (U)Int(8|16|32|64) - read/write
- Float32 | Float64 - read/write
- UUID - read/write
- String | FixedString- read/write
- Ipv4 | Ipv6 - read/write
- Nullable(*) - read/write
- Decimal - read/write
- Enum8, Enum16 - read/write
- Make query using SQL syntax supported by Clickhouse Server
- Execute arbitrary DDL commands
- Query Server status
- Insert into Clickhouse Server big (possibly continues ) data stream
- Load-balancing using round-robin method
Require rust 1.42.
The package has not published in crates.io. Download source from home git
git module update --init --recursive
Building requires rust 1.41 stable or nightly, tokio-0.2.x.
- Add next lines into the
dependencies
section of yourCargo.toml
:
clickhouse-driver = { version="0.1.0-alpha.3", path="../path_to_package/clickhouse-driver"}
naive-cityhash = { version="0.1.0" }
- Add usage in main.rs
extern crate clickhouse_driver;
use clickhouse_driver::prelude::*;
to connect to server provide connection url
tcp://username:password@localhost/database?paramname=paramvalue&...
for example
tcp://user:default@localhost/log?ping_timout=200ms&execute_timeout=5s&query_timeout=20s&pool_max=4&compression=lz4
-
compression
- accepts 'lz4' or 'none'. lz4 - fast and efficient compression method. It can significantly reduce transmitted data size and time if used for big data chunks. For small data it's better to choose none compression; -
connection_timeout
- timeout for establishing connection. Default is 500ms; -
execute_timeout
- timeout for waiting result of execute method call If the execute used for alter huge table it can take long time to complete. In this case set this parameter to appropriate value. In other cases leave the default value (180 sec); -
query_timout
- timeout for waiting response from the server with next block of data in query call. Note. Large data query may take long time. This timeout requires that only one chunk of data will receive until the end of timeout. Default value is 180sec; -
insert_timeout
- timeout for waiting result ofinsert
call insert method call returns error if the server does not receive message until the end of insert_timeout. As insert data processing is asynchronous it doesn't include server block processing time. Default value is 180 sec; -
ping_timout
- wait before ping response. The host will be considered unavailable if the server does not return pong response until the end of ping_timeout; -
retry_timeout
- the number of seconds to wait before send next ping if the server does not return; -
ping_before_query
- 1 (default) or 0. This option if set requires the driver to check Clickhouse server responsibility after returning connection from pool; -
pool_min
- minimal connection pool size. the number of idle connections that can be kept in the pool; Default value is 2; -
pool_max
- maximum number of established connections that the pool can issued. If the task require new connection while the pool reaches the maximum and there is not idle connection then this task will be put in waiting queue. Default value is 10; -
readonly
- 0 (default) |1|2. 0 - all commands allowed. 2- select queries and change settings, 1 - only select queries ; -
keepalive
- keepalive TCP option; -
host
- alternative host(s)
All timeout parameters accept integer number - the number of seconds.
To specify timeout in milliseconds add ms
at the end.
Examples:
200ms
( 200 mseconds )20
( 20 seconds )10s
( 10 seconds )
struct Blob {
id: u64,
url: String,
date: ServerDate,
client: Uuid,
ip: Ipv4Addr,
value: Decimal32,
}
impl Deserialize for Blob {
fn deserialize(row: Row) -> errors::Result<Self> {
let err = || errors::ConversionError::UnsupportedConversion;
let id: u64 = row.value(0)?.ok_or_else(err)?;
let url: &str = row.value(1)?.ok_or_else(err)?;
let date: ServerDate = row.value(2)?.ok_or_else(err)?;
let client: Uuid = row.value(3)?.ok_or_else(err)?;
let ip = row.value(4)?.ok_or_else(err)?;
let value: Decimal32 = row.value(5)?.ok_or_else(err)?;
Ok(Blob {
id,
date,
client,
value,
url: url.to_string(),
ip,
})
}
}
#[tokio::main]
async fn main() -> Result<(), io::Error> {
// CREATE TABLE IF NOT EXISTS blob (
// id UInt64,
// url String,
// date DateTime,
// client UUID,
// ip IPv4
// ) ENGINE=MergeTree PARTITION BY id ORDER BY date
let database_url =
env::var("DATABASE_URL").unwrap_or_else(|_| "tcp://localhost:9000?compression=lz4".into());
let pool = Pool::create(database_url.as_str())?;
{
let mut conn = pool.connection().await?;
conn.ping().await?;
let mut result = conn
.query("SELECT id, url, date, client, ip FROM blob WHERE id=150 ORDER BY date LIMIT 30000")
.await?;
while let Some(block) = result.next().await? {
for blob in block.iter::<Blob>() {
...
}
}
}
Ok(())
}
- For more examples see clickhouse-driver/examples/ directory*
- Doesn't support multidimensional Array,
- Array data types readonly
- LowCardinality - readonly and just String base type
- Insert method support only limited data types
insert
requires that inserted data exactly matches table column type- Int8(16|32|64) - i8(16|32|64)
- UInt8(16|32|64) - u8(16|32|64)
- Float32 - f32
- Float64 - f64
- Date - chrono::Date
- DateTime - chrono::DateTime
- UUID - Uuid
- IPv4 - AddrIpv4
- IPv6 - AddrIpv6
- String - &str,String, or &[u8]
- Enum8|16 - &str or String. Also, i16 value of enum index can be retrieved.
Array
column data type - read/writeTuple
- no plans to supportAggregateFunction
- no plans to supportLowCardinality
- add write support, extend it toDate
,DateTime
typesSerde
- Row serializer/deserializer interface in addition to ad-hoc oneTLS
- C-API ?
async_std
runtime