Skip to content

Subset of existing mega phylogenies for several taxonomic groups

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md
Notifications You must be signed in to change notification settings

daijiang/megatrees

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

10 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

megatrees

The goal of megatrees is to provide a collection of subset of existing mega-phylogenies (mega-trees, hence the package name) for ecological studies. For common community ecology analyses, results derived from such phylogenies are robust (Li et al. 2019). This package will save us time to repeat the effort to download and randomly select a small subset of posterior phylogenies (for some taxonomic groups). Previous studies suggested that sampling 50-100 trees is sufficient to capture the uncertainty of phylogenetic spaces (Baiser et al. 2018; Li et al. 2019; Nakagawa et al. 2019). Therefore, for taxonomic groups with multiple posterior distribution of phylogenies, a randomly selected subset of 100 phylogenies were provided here, which can be relatively large in size (e.g., 45 Mb for the 100 phylogenies of 32k fishes). The larger than normal size made it hard to host this package on CRAN.

Installation

You can install the development version of megatrees like so (Note that it may take a while to install given its large data size (~115 Mb)):

if(!require("remotes")) install.packages("remotes")
remotes::install_github("daijiang/megatrees")

List of phylogenies available

Taxon # of species # of trees R object Reference
Amphibian 7238 100 tree_amphibian_n100 Jetz and Pyron 2018
Bee 4651 1 tree_bee Henríquez-Piskulich et al. 2023
4651 100 tree_bee_n100 Henríquez-Piskulich et al. 2023
Butterfly 2244 1 tree_butterfly Kawahara et al. 2023
Bird 9993 100 tree_bird_n100 Jetz et al. 2012
Fish 11638 1 tree_fish_12k Rabosky et al. 2018
31516 50 tree_fish_32k_n50 Rabosky et al. 2018
Mammal 5831 100 tree_mammal_n100_phylacine Faurby et al. 2018
5911 100 tree_mammal_n100_vertlife Upham et al. 2019
Plant 74531 1 tree_plant_otl Brown and Smith 2018
Reptile (Squamate) 9755 100 tree_reptile_n100 Tonini et al. 2016
Shark, Ray, and Chimaera 1192 100 tree_shark_ray_n100 Stein et al. 2018

Contribution

Everyone is welcome to add new existing mega-trees here by sending a pull request. Or just open an issue to add links to the new mega-trees and I will add them here.

References

Baiser, B., Valle, D., Zelazny, Z., & Burleigh, J. G. (2018). Non‐random patterns of invasion and extinction reduce phylogenetic diversity in island bird assemblages. Ecography, 41(2), 361-374.

Faurby, S., Davis, M., Pedersen, R. Ø., Schowanek, S. D., Antonelli, A., & Svenning, J. C. (2018). PHYLACINE 1.2: The phylogenetic atlas of mammal macroecology. Ecology, 99(11), 2626-2626.

Henríquez-Piskulich, P.; Hugall, A.F.; Stuart-Fox; D. (2023). A supermatrix phylogeny of the world’s bees (Hymenoptera: Anthophila). bioRxiv 2023.06.16.545281. doi.org/10.1101/2023.06.16.545281.

Jetz, W., & Pyron, R. A. (2018). The interplay of past diversification and evolutionary isolation with present imperilment across the amphibian tree of life. Nature ecology & evolution, 2(5), 850-858.

Jetz, W., Thomas, G. H., Joy, J. B., Hartmann, K., & Mooers, A. O. (2012). The global diversity of birds in space and time. Nature, 491(7424), 444.

Li, D., Monahan, W. B., & Baiser, B. (2018). Species richness and phylogenetic diversity of native and non‐native species respond differently to area and environmental factors. Diversity and Distributions, 24(6), 853-864.

Li, D., Trotta, L., Marx, H. E., Allen, J. M., Sun, M., Soltis, D. E., ... & Baiser, B. (2019). For common community phylogenetic analyses, go ahead and use synthesis phylogenies. Ecology, 100(9), e02788.

Nakagawa, S., & De Villemereuil, P. (2019). A general method for simultaneously accounting for phylogenetic and species sampling uncertainty via Rubin’s rules in comparative analysis. Systematic Biology, 68(4), 632-641.

Rabosky, D. L., Chang, J., Title, P. O., Cowman, P. F., Sallan, L., Friedman, M., ... & Alfaro, M. E. (2018). An inverse latitudinal gradient in speciation rate for marine fishes. Nature, 559(7714), 392.

Smith, S. A., & Brown, J. W. (2018). Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany, 105(3), 302-314.

Stein, R. W., Mull, C. G., Kuhn, T. S., Aschliman, N. C., Davidson, L. N., Joy, J. B., ... & Mooers, A. O. (2018). Global priorities for conserving the evolutionary history of sharks, rays and chimaeras. Nature ecology & evolution, 2(2), 288-298.

Tonini, J. F. R., Beard, K. H., Ferreira, R. B., Jetz, W., & Pyron, R. A. (2016). Fully-sampled phylogenies of squamates reveal evolutionary patterns in threat status. Biological Conservation, 204, 23-31.

Upham, N. S., Esselstyn, J. A., & Jetz, W. (2019). Inferring the mammal tree: species-level sets of phylogenies for questions in ecology, evolution, and conservation. PLoS biology, 17(12), e3000494.

About

Subset of existing mega phylogenies for several taxonomic groups

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE
MIT
LICENSE.md

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages