pyjet allows you to perform jet clustering with FastJet on NumPy arrays. By default pyjet only depends on NumPy and internally uses FastJet's standalone fjcore release. The interface code is written in Cython that then becomes compiled C++, so it's fast. Remember that if you use pyjet then you are using FastJet and should cite the papers listed here.
pyjet provides the cluster()
function that takes a NumPy array as input
and returns a ClusterSequence
from which you can access the jets:
from pyjet import cluster
from pyjet.testdata import get_event
vectors = get_event()
sequence = cluster(vectors, R=1.0, p=-1)
jets = sequence.inclusive_jets() # list of PseudoJets
The first four fields of the input array vectors
must be either:
np.dtype([('pT', 'f8'), ('eta', 'f8'), ('phi', 'f8'), ('mass', 'f8')])
or if cluster(..., ep=True)
:
np.dtype([('E', 'f8'), ('px', 'f8'), ('py', 'f8'), ('pz', 'f8')])
Note that the field names of the input array need not match 'pT', 'eta', 'phi',
'mass' etc. pyjet only assumes that the first four fields are those quantities.
This array may also have additional fields of any type. Additional fields will
then become attributes of the PseudoJet
objects.
See the examples to get started:
To simply use the built-in FastJet source:
pip install --user pyjet
And you're good to go!
Get example.py and run it:
curl -O https://raw.githubusercontent.com/ndawe/pyjet/master/examples/example.py python example.py jet# pT eta phi mass #constit. 1 983.280 -0.868 2.905 36.457 34 2 901.745 0.221 -0.252 51.850 34 3 67.994 -1.194 -0.200 11.984 32 4 12.465 0.433 0.673 5.461 13 5 6.568 -2.629 1.133 2.099 9 6 6.498 -1.828 -2.248 3.309 6 The 6th jet has the following constituents: PseudoJet(pt=0.096, eta=-2.166, phi=-2.271, mass=0.000) PseudoJet(pt=2.200, eta=-1.747, phi=-1.972, mass=0.140) PseudoJet(pt=1.713, eta=-2.037, phi=-2.469, mass=0.940) PseudoJet(pt=0.263, eta=-1.682, phi=-2.564, mass=0.140) PseudoJet(pt=1.478, eta=-1.738, phi=-2.343, mass=0.940) PseudoJet(pt=0.894, eta=-1.527, phi=-2.250, mass=0.140) Get the constituents as an array (pT, eta, phi, mass): [( 0.09551261, -2.16560157, -2.27109083, 4.89091390e-06) ( 2.19975694, -1.74672746, -1.97178728, 1.39570000e-01) ( 1.71301882, -2.03656511, -2.46861524, 9.39570000e-01) ( 0.26339374, -1.68243005, -2.56397904, 1.39570000e-01) ( 1.47781519, -1.7378898 , -2.34304346, 9.39570000e-01) ( 0.89353864, -1.52729244, -2.24973202, 1.39570000e-01)] or (E, px, py, pz): [( 0.42190436, -0.06155242, -0.07303395, -0.41095089) ( 6.50193926, -0.85863306, -2.02526044, -6.11692764) ( 6.74203628, -1.33952806, -1.06775374, -6.45273802) ( 0.74600384, -0.22066287, -0.1438199 , -0.68386087) ( 4.43164941, -1.0311407 , -1.05862485, -4.07096881) ( 2.15920027, -0.56111108, -0.69538886, -1.96067711)]
To take advantage of the full FastJet library and optimized O(NlnN) kt and
anti-kt algorithms you can first build and install FastJet and then install
pyjet with the --external-fastjet
flag. Before building FastJet you will
need to install CGAL and GMP.
On a Debian-based system (Ubuntu):
sudo apt-get install libcgal-dev libcgal11v5 libgmp-dev libgmp10
On an RPM-based system (Fedora):
sudo dnf install gmp.x86_64 gmp-devel.x86_64 CGAL.x86_64 CGAL-devel.x86_64
On Mac OS:
brew install cgal gmp wget
Then run pyjet's install-fastjet.sh
script:
curl -O https://raw.githubusercontent.com/ndawe/pyjet/master/install-fastjet.sh chmod +x install-fastjet.sh sudo ./install-fastjet.sh
Now install pyjet like:
pip install --user pyjet --install-option="--external-fastjet"
pyjet will now use the external FastJet installation on your system.