Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added some fixes to DEXTR model handler #3325

Merged
merged 2 commits into from
Jun 15, 2021
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,7 +13,6 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- Filter `is_active` for user list (<https://github.com/openvinotoolkit/cvat/pull/3235>)
- Ability to export/import tasks (<https://github.com/openvinotoolkit/cvat/pull/3056>)


### Changed

- Updated manifest format, added meta with related images (<https://github.com/openvinotoolkit/cvat/pull/3122>)
Expand All @@ -36,6 +35,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- Fix CLI create an infinite loop if git repository responds with failure (<https://github.com/openvinotoolkit/cvat/pull/3267>)
- Bug with sidebar & fullscreen (<https://github.com/openvinotoolkit/cvat/pull/3289>)
- 504 Gateway Time-out on `data/meta` requests (<https://github.com/openvinotoolkit/cvat/pull/3269>)
- Some code issues in Deep Extreme Cut handler code (<https://github.com/openvinotoolkit/cvat/pull/3325>)

### Security

Expand Down
21 changes: 10 additions & 11 deletions serverless/openvino/dextr/nuclio/model_handler.py
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
# Copyright (C) 2018-2020 Intel Corporation
# Copyright (C) 2018-2021 Intel Corporation
#
# SPDX-License-Identifier: MIT

Expand All @@ -21,7 +21,7 @@ def __init__(self):
# polygon: [[x1,y1], [x2,y2], [x3,y3], [x4,y4], ...]
def handle(self, image, points):
DEXTR_PADDING = 50
DEXTR_TRESHOLD = 0.9
DEXTR_TRESHOLD = 0.8
DEXTR_SIZE = 512

numpy_image = np.array(image)
Expand All @@ -43,33 +43,32 @@ def handle(self, image, points):
resized = resized[:, :, :3]

# Make a heatmap
points = points - [min(points[:, 0]), min(points[:, 1])] + [DEXTR_PADDING, DEXTR_PADDING]
points = points - [bounding_box[0], bounding_box[1]]
points = (points * [DEXTR_SIZE / numpy_cropped.shape[1], DEXTR_SIZE / numpy_cropped.shape[0]]).astype(int)
heatmap = np.zeros(shape=resized.shape[:2], dtype=np.float64)
for point in points:
gaussian_x_axis = np.arange(0, DEXTR_SIZE, 1, float) - point[0]
gaussian_y_axis = np.arange(0, DEXTR_SIZE, 1, float)[:, np.newaxis] - point[1]
gaussian = np.exp(-4 * np.log(2) * ((gaussian_x_axis ** 2 + gaussian_y_axis ** 2) / 100)).astype(np.float64)
heatmap = np.maximum(heatmap, gaussian)
cv2.normalize(heatmap, heatmap, 0, 255, cv2.NORM_MINMAX)
cv2.normalize(heatmap, heatmap, 0, 255, cv2.NORM_MINMAX)

# Concat an image and a heatmap
input_dextr = np.concatenate((resized, heatmap[:, :, np.newaxis].astype(resized.dtype)), axis=2)
input_dextr = input_dextr.transpose((2,0,1))

pred = self.model.infer(input_dextr[np.newaxis, ...], False)[0, 0, :, :]
pred = cv2.resize(pred, tuple(reversed(numpy_cropped.shape[:2])), interpolation = cv2.INTER_CUBIC)
result = np.zeros(numpy_image.shape[:2])
result[bounding_box[1]:bounding_box[1] + pred.shape[0], bounding_box[0]:bounding_box[0] + pred.shape[1]] = pred > DEXTR_TRESHOLD
pred = (pred > DEXTR_TRESHOLD).astype(np.uint8)
pred = cv2.resize(pred, tuple(reversed(numpy_cropped.shape[:2])), interpolation = cv2.INTER_NEAREST)
result = np.zeros(numpy_image.shape[:2]).astype(np.uint8)
result[bounding_box[1]:bounding_box[1] + pred.shape[0], bounding_box[0]:bounding_box[0] + pred.shape[1]] = pred

# Convert a mask to a polygon
result = np.array(result, dtype=np.uint8)
cv2.normalize(result,result,0,255,cv2.NORM_MINMAX)
contours = None
if int(cv2.__version__.split('.')[0]) > 3:
contours = cv2.findContours(result, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[0]
contours = cv2.findContours(result, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[0]
else:
contours = cv2.findContours(result, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[1]
contours = cv2.findContours(result, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)[1]

contours = max(contours, key=lambda arr: arr.size)
if contours.shape.count(1):
Expand Down