Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Siammask tracker as DL serverless function #1988

Merged
merged 8 commits into from
Aug 7, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

## [1.1.0] - Unreleased
### Added
- Siammask tracker as DL serverless function (<https://github.com/opencv/cvat/pull/1988>)
- [Datumaro] Added model info and source info commands (<https://github.com/opencv/cvat/pull/1973>)

### Changed
Expand Down
7 changes: 6 additions & 1 deletion cvat/apps/lambda_manager/views.py
Original file line number Diff line number Diff line change
Expand Up @@ -155,6 +155,12 @@ def invoke(self, db_task, data):
payload.update({
"max_distance": max_distance
})
elif self.kind == LambdaType.TRACKER:
payload.update({
"image": self._get_image(db_task, data["frame"], quality),
"shape": data.get("shape", None),
"state": data.get("state", None)
})
else:
raise ValidationError(
'`{}` lambda function has incorrect type: {}'
Expand Down Expand Up @@ -469,7 +475,6 @@ def __call__(function, task, quality, cleanup, **kwargs):
LambdaJob._call_reid(function, db_task, quality,
kwargs.get("threshold"), kwargs.get("max_distance"))


def return_response(success_code=status.HTTP_200_OK):
def wrap_response(func):
@wraps(func)
Expand Down
4 changes: 4 additions & 0 deletions serverless/deploy.sh
Original file line number Diff line number Diff line change
Expand Up @@ -46,4 +46,8 @@ nuctl deploy --project-name cvat \
--path $SCRIPT_DIR/tensorflow/faster_rcnn_inception_v2_coco/nuclio \
--platform local

nuctl deploy --project-name cvat \
--path $SCRIPT_DIR/pytorch/foolwood/siammask/nuclio \
--platform local

nuctl get function
11 changes: 5 additions & 6 deletions serverless/pytorch/foolwood/siammask/nuclio/function.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -26,21 +26,20 @@ spec:
value: /opt/nuclio
- kind: RUN
value: conda create -y -n siammask python=3.6
- kind: RUN
value: source activate siammask
- kind: SHELL
value: '["conda", "run", "-n", "siammask", "/bin/bash", "-c"]'
- kind: RUN
value: git clone https://github.com/foolwood/SiamMask.git
- kind: RUN
value: pip install -r SiamMask/requirements.txt
value: pip install -r SiamMask/requirements.txt jsonpickle
- kind: RUN
value: conda install -y gcc_linux-64
- kind: RUN
value: cd SiamMask && bash make.sh && cd -
- kind: RUN
value: wget -P SiamMask/experiments/siammask_sharp http://www.robots.ox.ac.uk/~qwang/SiamMask_DAVIS.pth

- kind: WORKDIR
value: /opt/nuclio/pysot
- kind: ENTRYPOINT
value: '["conda", "run", "-n", "siammask"]'

triggers:
myHttpTrigger:
Expand Down
44 changes: 36 additions & 8 deletions serverless/pytorch/foolwood/siammask/nuclio/model_handler.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,14 +4,18 @@

from tools.test import *
import os
from copy import copy
import jsonpickle
import numpy as np

class ModelHandler:
def __init__(self):
# Setup device
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
torch.backends.cudnn.benchmark = True

base_dir = "/opt/nuclio/SiamMask/experiments/siammask_sharp"
base_dir = os.environ.get("MODEL_PATH",
"/opt/nuclio/SiamMask/experiments/siammask_sharp")
class configPath:
config = os.path.join(base_dir, "config_davis.json")

Expand All @@ -21,18 +25,42 @@ class configPath:
self.siammask = load_pretrain(siammask, os.path.join(base_dir, "SiamMask_DAVIS.pth"))
self.siammask.eval().to(self.device)

def encode_state(self, state):
state['net.zf'] = state['net'].zf
state.pop('net', None)
state.pop('mask', None)

for k,v in state.items():
state[k] = jsonpickle.encode(v)

return state

def decode_state(self, state):
for k,v in state.items():
state[k] = jsonpickle.decode(v)

state['net'] = copy(self.siammask)
state['net'].zf = state['net.zf']
del state['net.zf']

return state

def infer(self, image, shape, state):
image = np.array(image)
if state is None: # init tracking
x, y, w, h = shape
target_pos = np.array([x + w / 2, y + h / 2])
target_sz = np.array([w, h])
state = siamese_init(image, target_pos, target_sz, self.siammask,
xtl, ytl, xbr, ybr = shape
target_pos = np.array([(xtl + xbr) / 2, (ytl + ybr) / 2])
target_sz = np.array([xbr - xtl, ybr - ytl])
siammask = copy(self.siammask) # don't modify self.siammask
state = siamese_init(image, target_pos, target_sz, siammask,
self.config['hp'], device=self.device)
state = self.encode_state(state)
else: # track
state = siamese_track(state, image, mask_enable=True, refine_enable=True,
device=self.device)
shape = state['ploygon'].flatten()
state = self.decode_state(state)
state = siamese_track(state, image, mask_enable=True,
refine_enable=True, device=self.device)
shape = state['ploygon'].flatten().tolist()
state = self.encode_state(state)

return {"shape": shape, "state": state}