Skip to content

Commit

Permalink
added in yolo auto annotation sciprt (#794)
Browse files Browse the repository at this point in the history
  • Loading branch information
benhoff authored and nmanovic committed Oct 28, 2019
1 parent a435b41 commit a0f083d
Show file tree
Hide file tree
Showing 4 changed files with 267 additions and 0 deletions.
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -11,6 +11,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
https://github.com/opencv/cvat/issues/750).
- Changed REST API: removed PUT and added DELETE methods for /api/v1/users/ID.
- Added Mask-RCNN Auto Annotation Script
- Added Yolo Auto Annotation Script

### Changed
-
Expand Down
22 changes: 22 additions & 0 deletions utils/open_model_zoo/yolov3/README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
# Object Detection YOLO V3 Python Demo, Async API Performance Showcase

See [these instructions][1] for converting the yolo weights to the OpenVino format.

As of OpenVINO 2019 R3, only tensorflow 1.13 and NetworkX 2.3.
These can be explicitly installed using the following command.

```bash
$ pip3 install tensorflow==1.13 networkx==2.3
```


Additionally, at the time of writing, the model optimizer required an input shape.

``` bash
$ python3 mo_tf.py \
--input_model /path/to/yolo_v3.pb \
--tensorflow_use_custom_operations_config $MO_ROOT/extensions/front/tf/yolo_v3.json \
--input_shape [1,416,416,3]
```

[1]: https://docs.openvinotoolkit.org/latest/_docs_MO_DG_prepare_model_convert_model_tf_specific_Convert_YOLO_From_Tensorflow.html
160 changes: 160 additions & 0 deletions utils/open_model_zoo/yolov3/interp.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,160 @@
from math import exp


class Parser:
IOU_THRESHOLD = 0.4
PROB_THRESHOLD = 0.5

def __init__(self):
self.objects = []

def scale_bbox(self, x, y, h, w, class_id, confidence, h_scale, w_scale):
xmin = int((x - w / 2) * w_scale)
ymin = int((y - h / 2) * h_scale)
xmax = int(xmin + w * w_scale)
ymax = int(ymin + h * h_scale)

return dict(xmin=xmin, xmax=xmax, ymin=ymin, ymax=ymax, class_id=class_id, confidence=confidence)

def entry_index(self, side, coord, classes, location, entry):
side_power_2 = side ** 2
n = location // side_power_2
loc = location % side_power_2
return int(side_power_2 * (n * (coord + classes + 1) + entry) + loc)

def intersection_over_union(self, box_1, box_2):
width_of_overlap_area = min(box_1['xmax'], box_2['xmax']) - max(box_1['xmin'], box_2['xmin'])
height_of_overlap_area = min(box_1['ymax'], box_2['ymax']) - max(box_1['ymin'], box_2['ymin'])
if width_of_overlap_area < 0 or height_of_overlap_area < 0:
area_of_overlap = 0
else:
area_of_overlap = width_of_overlap_area * height_of_overlap_area
box_1_area = (box_1['ymax'] - box_1['ymin']) * (box_1['xmax'] - box_1['xmin'])
box_2_area = (box_2['ymax'] - box_2['ymin']) * (box_2['xmax'] - box_2['xmin'])
area_of_union = box_1_area + box_2_area - area_of_overlap
if area_of_union == 0:
return 0
return area_of_overlap / area_of_union


def sort_objects(self):
self.objects = sorted(self.objects, key=lambda obj : obj['confidence'], reverse=True)

for i in range(len(self.objects)):
if self.objects[i]['confidence'] == 0:
continue
for j in range(i + 1, len(self.objects)):
if self.intersection_over_union(self.objects[i], self.objects[j]) > self.IOU_THRESHOLD:
self.objects[j]['confidence'] = 0

def parse_yolo_region(self, blob: 'np.ndarray', original_shape: list, params: dict) -> list:

# YOLO magic numbers
# See: https://github.com/opencv/open_model_zoo/blob/acf297c73db8cb3f68791ae1fad4a7cc4a6039e5/demos/python_demos/object_detection_demo_yolov3_async/object_detection_demo_yolov3_async.py#L61
num = 3
coords = 4
classes = 80
# -----------------

_, _, out_blob_h, out_blob_w = blob.shape
assert out_blob_w == out_blob_h, "Invalid size of output blob. It sould be in NCHW layout and height should " \
"be equal to width. Current height = {}, current width = {}" \
"".format(out_blob_h, out_blob_w)

# ------ Extracting layer parameters --
orig_im_h, orig_im_w = original_shape
predictions = blob.flatten()
side_square = params['side'] * params['side']

# ------ Parsing YOLO Region output --
for i in range(side_square):
row = i // params['side']
col = i % params['side']
for n in range(num):
# -----entry index calcs------
obj_index = self.entry_index(params['side'], coords, classes, n * side_square + i, coords)
# -----entry index calcs------
scale = predictions[obj_index]
if scale < self.PROB_THRESHOLD:
continue
box_index = self.entry_index(params['side'], coords, classes, n * side_square + i, 0)

# Network produces location predictions in absolute coordinates of feature maps.
# Scale it to relative coordinates.
x = (col + predictions[box_index + 0 * side_square]) / params['side']
y = (row + predictions[box_index + 1 * side_square]) / params['side']
# Value for exp is very big number in some cases so following construction is using here
try:
w_exp = exp(predictions[box_index + 2 * side_square])
h_exp = exp(predictions[box_index + 3 * side_square])
except OverflowError:
continue

w = w_exp * params['anchors'][2 * n] / 416
h = h_exp * params['anchors'][2 * n + 1] / 416
for j in range(classes):
class_index = self.entry_index(params['side'], coords, classes, n * side_square + i,
coords + 1 + j)
confidence = scale * predictions[class_index]
if confidence < self.PROB_THRESHOLD:
continue

self.objects.append(self.scale_bbox(x=x,
y=y,
h=h,
w=w,
class_id=j,
confidence=confidence,
h_scale=orig_im_h,
w_scale=orig_im_w))


for detection in detections:
frame_number = detection['frame_id']
height = detection['frame_height']
width = detection['frame_width']
detection = detection['detections']

original_shape = (width, height)

resized_width = width / 416
resized_height = height / 416

resized_shape = (resized_width, resized_height)

# https://github.com/opencv/open_model_zoo/blob/master/demos/python_demos/object_detection_demo_yolov3_async/object_detection_demo_yolov3_async.py#L72
anchors = [10,13,16,30,33,23,30,61,62,45,59,119,116,90,156,198,373,326]
conv_6 = {'side': 13, 'mask': [6,7,8]}
conv_14 = {'side': 26, 'mask': [3,4,5]}
conv_22 = {'side': 52, 'mask': [0,1,2]}

yolo_params = {'detector/yolo-v3/Conv_6/BiasAdd/YoloRegion': conv_6,
'detector/yolo-v3/Conv_14/BiasAdd/YoloRegion': conv_14,
'detector/yolo-v3/Conv_22/BiasAdd/YoloRegion': conv_22}

for conv_net in yolo_params.values():
mask = conv_net['mask']
masked_anchors = []
for idx in mask:
masked_anchors += [anchors[idx * 2], anchors[idx * 2 + 1]]

conv_net['anchors'] = masked_anchors

parser = Parser()

for name, blob in detection.items():
parser.parse_yolo_region(blob, original_shape, yolo_params[name])

parser.sort_objects()

objects = []

for obj in parser.objects:
if obj['confidence'] >= parser.PROB_THRESHOLD:
label = obj['class_id']
xmin = obj['xmin']
xmax = obj['xmax']
ymin = obj['ymin']
ymax = obj['ymax']

results.add_box(xmax, ymax, xmin, ymin, label, frame_number)
84 changes: 84 additions & 0 deletions utils/open_model_zoo/yolov3/mapping.json
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
{
"label_map": {
"1": "person",
"2": "bicycle",
"3": "car",
"4": "motorbike",
"5": "aeroplane",
"6": "bus",
"7": "train",
"8": "truck",
"9": "boat",
"10": "traffic light",
"11": "fire hydrant",
"12": "stop sign",
"13": "parking meter",
"14": "bench",
"15": "bird",
"16": "cat",
"17": "dog",
"18": "horse",
"19": "sheep",
"20": "cow",
"21": "elephant",
"22": "bear",
"23": "zebra",
"24": "giraffe",
"25": "backpack",
"26": "umbrella",
"27": "handbag",
"28": "tie",
"29": "suitcase",
"30": "frisbee",
"31": "skis",
"32": "snowboard",
"33": "sports ball",
"34": "kite",
"35": "baseball bat",
"36": "baseball glove",
"37": "skateboard",
"38": "surfboard",
"39": "tennis racket",
"40": "bottle",
"41": "wine glass",
"42": "cup",
"43": "fork",
"44": "knife",
"45": "spoon",
"46": "bowl",
"47": "banana",
"48": "apple",
"49": "sandwich",
"50": "orange",
"51": "broccoli",
"52": "carrot",
"53": "hot dog",
"54": "pizza",
"55": "donut",
"56": "cake",
"57": "chair",
"58": "sofa",
"59": "pottedplant",
"60": "bed",
"61": "diningtable",
"62": "toilet",
"63": "tvmonitor",
"64": "laptop",
"65": "mouse",
"66": "remote",
"67": "keyboard",
"68": "cell phone",
"69": "microwave",
"70": "oven",
"71": "toaster",
"72": "sink",
"73": "refrigerator",
"74": "book",
"75": "clock",
"76": "vase",
"77": "scissors",
"78": "teddy bear",
"79": "hair drier",
"80": "toothbrush"
}
}

0 comments on commit a0f083d

Please sign in to comment.