Skip to content

Commit

Permalink
Initial version of FBRS interactive segmentation (#2094)
Browse files Browse the repository at this point in the history
* Initial version of FBRS interactive segmentation

* Add min_pos_points for dextr

* Fix fbrs serverless function.

* Fix codacy issues.

* Minor changes

* Fix codacy issues.

* Fix typo

* Update CHANGELOG

* Add license header

* Fix comments in yaml
  • Loading branch information
Nikita Manovich authored Sep 9, 2020
1 parent 4e21929 commit 5ebd91a
Show file tree
Hide file tree
Showing 6 changed files with 206 additions and 17 deletions.
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
- Automatic tracking of bounding boxes using serverless functions (<https://github.com/opencv/cvat/pull/2136>)
- [Datumaro] CLI command for dataset equality comparison (<https://github.com/opencv/cvat/pull/1989>)
- [Datumaro] Merging of datasets with different labels (<https://github.com/opencv/cvat/pull/2098>)
- Add FBRS interactive segmentation serverless function (<https://github.com/openvinotoolkit/cvat/pull/2094>)

### Changed
- UI models (like DEXTR) were redesigned to be more interactive (<https://github.com/opencv/cvat/pull/2054>)
Expand Down
38 changes: 21 additions & 17 deletions serverless/deploy.sh
Original file line number Diff line number Diff line change
Expand Up @@ -4,50 +4,54 @@ SCRIPT_DIR="$( cd "$( dirname "${BASH_SOURCE[0]}" )" >/dev/null 2>&1 && pwd )"

nuctl create project cvat
nuctl deploy --project-name cvat \
--path $SCRIPT_DIR/openvino/omz/public/faster_rcnn_inception_v2_coco/nuclio \
--volume $SCRIPT_DIR/openvino/common:/opt/nuclio/common \
--path "$SCRIPT_DIR/openvino/omz/public/faster_rcnn_inception_v2_coco/nuclio" \
--volume "$SCRIPT_DIR/openvino/common:/opt/nuclio/common" \
--platform local

nuctl deploy --project-name cvat \
--path $SCRIPT_DIR/openvino/omz/public/mask_rcnn_inception_resnet_v2_atrous_coco/nuclio \
--volume $SCRIPT_DIR/openvino/common:/opt/nuclio/common \
--path "$SCRIPT_DIR/openvino/omz/public/mask_rcnn_inception_resnet_v2_atrous_coco/nuclio" \
--volume "$SCRIPT_DIR/openvino/common:/opt/nuclio/common" \
--platform local

nuctl deploy --project-name cvat \
--path $SCRIPT_DIR/openvino/omz/public/yolo-v3-tf/nuclio \
--volume $SCRIPT_DIR/openvino/common:/opt/nuclio/common \
--path "$SCRIPT_DIR/openvino/omz/public/yolo-v3-tf/nuclio" \
--volume "$SCRIPT_DIR/openvino/common:/opt/nuclio/common" \
--platform local

nuctl deploy --project-name cvat \
--path $SCRIPT_DIR/openvino/omz/intel/text-detection-0004/nuclio \
--volume $SCRIPT_DIR/openvino/common:/opt/nuclio/common \
--path "$SCRIPT_DIR/openvino/omz/intel/text-detection-0004/nuclio" \
--volume "$SCRIPT_DIR/openvino/common:/opt/nuclio/common" \
--platform local

nuctl deploy --project-name cvat \
--path $SCRIPT_DIR/openvino/omz/intel/semantic-segmentation-adas-0001/nuclio \
--volume $SCRIPT_DIR/openvino/common:/opt/nuclio/common \
--path "$SCRIPT_DIR/openvino/omz/intel/semantic-segmentation-adas-0001/nuclio" \
--volume "$SCRIPT_DIR/openvino/common:/opt/nuclio/common" \
--platform local

nuctl deploy --project-name cvat \
--path $SCRIPT_DIR/openvino/omz/intel/person-reidentification-retail-300/nuclio \
--volume $SCRIPT_DIR/openvino/common:/opt/nuclio/common \
--path "$SCRIPT_DIR/openvino/omz/intel/person-reidentification-retail-300/nuclio" \
--volume "$SCRIPT_DIR/openvino/common:/opt/nuclio/common" \
--platform local

nuctl deploy --project-name cvat \
--path $SCRIPT_DIR/openvino/dextr/nuclio \
--volume $SCRIPT_DIR/openvino/common:/opt/nuclio/common \
--path "$SCRIPT_DIR/openvino/dextr/nuclio" \
--volume "$SCRIPT_DIR/openvino/common:/opt/nuclio/common" \
--platform local

nuctl deploy --project-name cvat \
--path $SCRIPT_DIR/tensorflow/matterport/mask_rcnn/nuclio \
--path "$SCRIPT_DIR/tensorflow/matterport/mask_rcnn/nuclio" \
--platform local

nuctl deploy --project-name cvat \
--path $SCRIPT_DIR/tensorflow/faster_rcnn_inception_v2_coco/nuclio \
--path "$SCRIPT_DIR/tensorflow/faster_rcnn_inception_v2_coco/nuclio" \
--platform local

nuctl deploy --project-name cvat \
--path $SCRIPT_DIR/pytorch/foolwood/siammask/nuclio \
--path "$SCRIPT_DIR/pytorch/foolwood/siammask/nuclio" \
--platform local

nuctl deploy --project-name cvat \
--path "$SCRIPT_DIR/pytorch/saic-vul/fbrs/nuclio" \
--platform local

nuctl get function
1 change: 1 addition & 0 deletions serverless/openvino/dextr/nuclio/function.yaml
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ metadata:
type: interactor
spec:
framework: openvino
min_pos_points: 4

spec:
description: Deep Extreme Cut
Expand Down
59 changes: 59 additions & 0 deletions serverless/pytorch/saic-vul/fbrs/nuclio/function.yaml
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
metadata:
name: pth.saic-vul.fbrs
namespace: cvat
annotations:
name: f-BRS
type: interactor
spec:
framework: pytorch
min_pos_points: 1

spec:
description: f-BRS interactive segmentation
runtime: "python:3.6"
handler: main:handler
eventTimeout: 30s
env:
- name: PYTHONPATH
value: /opt/nuclio/fbrs

build:
image: cvat/pth.saic-vul.fbrs
baseImage: python:3.6.11

directives:
preCopy:
- kind: WORKDIR
value: /opt/nuclio
- kind: RUN
value: git clone https://github.com/saic-vul/fbrs_interactive_segmentation.git fbrs
- kind: WORKDIR
value: /opt/nuclio/fbrs
- kind: ENV
value: fileid=1Z9dQtpWVTobEdmUBntpUU0pJl-pEXUwR
- kind: ENV
value: filename=resnet101_dh256_sbd.pth
- kind: RUN
value: curl -c ./cookie -s -L "https://drive.google.com/uc?export=download&id=${fileid}"
- kind: RUN
value: curl -Lb ./cookie "https://drive.google.com/uc?export=download&confirm=`awk '/download/ {print $NF}' ./cookie`&id=${fileid}" -o ${filename}
- kind: RUN
value: apt update && apt install -y libgl1-mesa-glx
- kind: RUN
value: pip3 install -r requirements.txt
- kind: WORKDIR
value: /opt/nuclio

triggers:
myHttpTrigger:
maxWorkers: 2
kind: "http"
workerAvailabilityTimeoutMilliseconds: 10000
attributes:
maxRequestBodySize: 33554432 # 32MB

platform:
attributes:
restartPolicy:
name: always
maximumRetryCount: 3
33 changes: 33 additions & 0 deletions serverless/pytorch/saic-vul/fbrs/nuclio/main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
# Copyright (C) 2020 Intel Corporation
#
# SPDX-License-Identifier: MIT

import json
import base64
from PIL import Image
import io
from model_handler import ModelHandler

def init_context(context):
context.logger.info("Init context... 0%")

model = ModelHandler()
setattr(context.user_data, 'model', model)

context.logger.info("Init context...100%")

def handler(context, event):
context.logger.info("call handler")
data = event.body
pos_points = data["points"]
neg_points = []
threshold = data.get("threshold", 0.5)
buf = io.BytesIO(base64.b64decode(data["image"].encode('utf-8')))
image = Image.open(buf)

polygon = context.user_data.model.handle(image, pos_points,
neg_points, threshold)
return context.Response(body=json.dumps(polygon),
headers={},
content_type='application/json',
status_code=200)
91 changes: 91 additions & 0 deletions serverless/pytorch/saic-vul/fbrs/nuclio/model_handler.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,91 @@
# Copyright (C) 2020 Intel Corporation
#
# SPDX-License-Identifier: MIT

import torch
import numpy as np
from torchvision import transforms
import cv2
import os

from isegm.inference.predictors import get_predictor
from isegm.inference.utils import load_deeplab_is_model, load_hrnet_is_model
from isegm.inference.clicker import Clicker, Click

def convert_mask_to_polygon(mask):
mask = np.array(mask, dtype=np.uint8)
cv2.normalize(mask, mask, 0, 255, cv2.NORM_MINMAX)
contours = None
if int(cv2.__version__.split('.')[0]) > 3:
contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[0]
else:
contours = cv2.findContours(mask, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_TC89_KCOS)[1]

contours = max(contours, key=lambda arr: arr.size)
if contours.shape.count(1):
contours = np.squeeze(contours)
if contours.size < 3 * 2:
raise Exception('Less then three point have been detected. Can not build a polygon.')

polygon = []
for point in contours:
polygon.append([int(point[0]), int(point[1])])

return polygon

class ModelHandler:
def __init__(self):
torch.backends.cudnn.deterministic = True
base_dir = os.environ.get("MODEL_PATH", "/opt/nuclio/fbrs")
model_path = os.path.join(base_dir, "resnet101_dh256_sbd.pth")
state_dict = torch.load(model_path, map_location='cpu')

self.net = None
backbone = 'auto'
self.device = 'cuda' if torch.cuda.is_available() else 'cpu'
for k in state_dict.keys():
if 'feature_extractor.stage2.0.branches' in k:
self.net = load_hrnet_is_model(state_dict, self.device, backbone)
break

if self.net is None:
self.net = load_deeplab_is_model(state_dict, self.device, backbone)
self.net.to(self.device)

def handle(self, image, pos_points, neg_points, threshold):
input_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize([.485, .456, .406], [.229, .224, .225])
])

image_nd = input_transform(image).to(self.device)

clicker = Clicker()
for x, y in pos_points:
click = Click(is_positive=True, coords=(y, x))
clicker.add_click(click)

for x, y in neg_points:
click = Click(is_positive=False, coords=(y, x))
clicker.add_click(click)

predictor_params = {
'brs_mode': 'f-BRS-B',
'brs_opt_func_params': {'min_iou_diff': 0.001},
'lbfgs_params': {'maxfun': 20},
'predictor_params': {'max_size': 800, 'net_clicks_limit': 8},
'prob_thresh': threshold,
'zoom_in_params': {'expansion_ratio': 1.4, 'skip_clicks': 1, 'target_size': 480}}
predictor = get_predictor(self.net, device=self.device,
**predictor_params)
predictor.set_input_image(image_nd)

object_prob = predictor.get_prediction(clicker)
if self.device == 'cuda':
torch.cuda.empty_cache()
object_mask = object_prob > threshold
polygon = convert_mask_to_polygon(object_mask)

return polygon


0 comments on commit 5ebd91a

Please sign in to comment.