Skip to content

Commit

Permalink
[Datumaro] Fixes (#1953)
Browse files Browse the repository at this point in the history
* Add absolute image path in rest api extractor

* Add default split for random split

* Fix image path in datumaro format

* Preserve bboxes in coco format

* update changelog

Co-authored-by: Nikita Manovich <[email protected]>
  • Loading branch information
zhiltsov-max and nmanovic authored Jul 29, 2020
1 parent e7585b8 commit 0062ecd
Show file tree
Hide file tree
Showing 7 changed files with 74 additions and 71 deletions.
1 change: 1 addition & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0

### Changed
- Smaller object details (<https://github.com/opencv/cvat/pull/1877>)
- `COCO` format does not convert bboxes to polygons on export (<https://github.com/opencv/cvat/pull/1953>)
- It is impossible to submit a DL model in OpenVINO format using UI. Now you can deploy new models on the server using serverless functions (<https://github.com/opencv/cvat/pull/1767>)
- Files and folders under share path are now alphabetically sorted

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -100,7 +100,7 @@ def __init__(self, url):
if entry.get('height') and entry.get('width'):
size = (entry['height'], entry['width'])
image = Image(data=self._make_image_loader(item_id),
path=item_filename, size=size)
path=self._image_local_path(item_id), size=size)
item = DatasetItem(id=item_id, image=image)
items.append((item.id, item))

Expand Down
4 changes: 2 additions & 2 deletions datumaro/datumaro/plugins/coco_format/converter.py
Original file line number Diff line number Diff line change
Expand Up @@ -298,8 +298,8 @@ def convert_instance(self, instance, item):
rles = mask_utils.merge(rles)
area = mask_utils.area(rles)
else:
x, y, w, h = bbox
segmentation = [[x, y, x + w, y, x + w, y + h, x, y + h]]
_, _, w, h = bbox
segmentation = []
area = w * h

elem = {
Expand Down
3 changes: 2 additions & 1 deletion datumaro/datumaro/plugins/datumaro_format/converter.py
Original file line number Diff line number Diff line change
Expand Up @@ -54,7 +54,8 @@ def write_item(self, item):
if item.has_image:
path = item.image.path
if self._context._save_images:
path = self._context._save_image(item)
path = self._context._make_image_filename(item)
self._context._save_image(item, path)

item_desc['image'] = {
'size': item.image.size,
Expand Down
1 change: 1 addition & 0 deletions datumaro/datumaro/plugins/transforms.py
Original file line number Diff line number Diff line change
Expand Up @@ -322,6 +322,7 @@ def build_cmdline_parser(cls, **kwargs):
parser = super().build_cmdline_parser(**kwargs)
parser.add_argument('-s', '--subset', action='append',
type=cls._split_arg, dest='splits',
default=[('train', 0.67), ('test', 0.33)],
help="Subsets in the form of: '<subset>:<ratio>' (repeatable)")
parser.add_argument('--seed', type=int, help="Random seed")
return parser
Expand Down
32 changes: 15 additions & 17 deletions datumaro/tests/test_coco_format.py
Original file line number Diff line number Diff line change
Expand Up @@ -4,8 +4,8 @@

from unittest import TestCase

from datumaro.components.project import (Project, Dataset)
from datumaro.components.extractor import (Extractor, DatasetItem,
from datumaro.components.project import Project, Dataset
from datumaro.components.extractor import (DatasetItem,
AnnotationType, Label, Mask, Points, Polygon, Bbox, Caption,
LabelCategories, PointsCategories
)
Expand All @@ -26,7 +26,6 @@

class CocoImporterTest(TestCase):
def test_can_import(self):

expected_dataset = Dataset.from_iterable([
DatasetItem(id='000000000001', image=np.ones((10, 5, 3)),
subset='val', attributes={'id': 1},
Expand Down Expand Up @@ -349,7 +348,6 @@ def test_can_save_and_load_labels(self):
CocoLabelsConverter.convert, test_dir)

def test_can_save_and_load_keypoints(self):

source_dataset = Dataset.from_iterable([
DatasetItem(id=1, subset='train', image=np.zeros((5, 5, 3)),
annotations=[
Expand All @@ -373,11 +371,11 @@ def test_can_save_and_load_keypoints(self):
Points([0, 0, 1, 2, 3, 4], [0, 1, 2], id=5),
]),
], categories={
AnnotationType.label: LabelCategories.from_iterable(
str(i) for i in range(10)),
AnnotationType.points: PointsCategories.from_iterable(
(i, None, [[0, 1], [1, 2]]) for i in range(10)
),
AnnotationType.label: LabelCategories.from_iterable(
str(i) for i in range(10)),
AnnotationType.points: PointsCategories.from_iterable(
(i, None, [[0, 1], [1, 2]]) for i in range(10)
),
})

target_dataset = Dataset.from_iterable([
Expand All @@ -393,30 +391,30 @@ def test_can_save_and_load_keypoints(self):
Points([1, 2, 3, 4, 2, 3],
group=2, id=2,
attributes={'is_crowd': False}),
Polygon([1, 2, 3, 2, 3, 4, 1, 4],
Bbox(1, 2, 2, 2,
group=2, id=2,
attributes={'is_crowd': False}),

Points([1, 2, 0, 2, 4, 1],
label=5, group=3, id=3,
attributes={'is_crowd': False}),
Polygon([0, 1, 4, 1, 4, 2, 0, 2],
Bbox(0, 1, 4, 1,
label=5, group=3, id=3,
attributes={'is_crowd': False}),

Points([0, 0, 1, 2, 3, 4], [0, 1, 2],
group=5, id=5,
attributes={'is_crowd': False}),
Polygon([1, 2, 3, 2, 3, 4, 1, 4],
Bbox(1, 2, 2, 2,
group=5, id=5,
attributes={'is_crowd': False}),
], attributes={'id': 1}),
], categories={
AnnotationType.label: LabelCategories.from_iterable(
str(i) for i in range(10)),
AnnotationType.points: PointsCategories.from_iterable(
(i, None, [[0, 1], [1, 2]]) for i in range(10)
),
AnnotationType.label: LabelCategories.from_iterable(
str(i) for i in range(10)),
AnnotationType.points: PointsCategories.from_iterable(
(i, None, [[0, 1], [1, 2]]) for i in range(10)
),
})

with TestDir() as test_dir:
Expand Down
102 changes: 52 additions & 50 deletions datumaro/tests/test_datumaro_format.py
Original file line number Diff line number Diff line change
Expand Up @@ -32,56 +32,58 @@ def _test_save_and_load(self, source_dataset, converter, test_dir,
compare_datasets_strict(self,
expected=target_dataset, actual=parsed_dataset)

label_categories = LabelCategories()
for i in range(5):
label_categories.add('cat' + str(i))

mask_categories = MaskCategories(
generate_colormap(len(label_categories.items)))

points_categories = PointsCategories()
for index, _ in enumerate(label_categories.items):
points_categories.add(index, ['cat1', 'cat2'], joints=[[0, 1]])

test_dataset = Dataset.from_iterable([
DatasetItem(id=100, subset='train', image=np.ones((10, 6, 3)),
annotations=[
Caption('hello', id=1),
Caption('world', id=2, group=5),
Label(2, id=3, attributes={
'x': 1,
'y': '2',
}),
Bbox(1, 2, 3, 4, label=4, id=4, z_order=1, attributes={
'score': 1.0,
}),
Bbox(5, 6, 7, 8, id=5, group=5),
Points([1, 2, 2, 0, 1, 1], label=0, id=5, z_order=4),
Mask(label=3, id=5, z_order=2, image=np.ones((2, 3))),
]),
DatasetItem(id=21, subset='train',
annotations=[
Caption('test'),
Label(2),
Bbox(1, 2, 3, 4, 5, id=42, group=42)
]),

DatasetItem(id=2, subset='val',
annotations=[
PolyLine([1, 2, 3, 4, 5, 6, 7, 8], id=11, z_order=1),
Polygon([1, 2, 3, 4, 5, 6, 7, 8], id=12, z_order=4),
]),

DatasetItem(id=42, subset='test',
attributes={'a1': 5, 'a2': '42'}),

DatasetItem(id=42),
DatasetItem(id=43, image=Image(path='1/b/c.qq', size=(2, 4))),
], categories={
AnnotationType.label: label_categories,
AnnotationType.mask: mask_categories,
AnnotationType.points: points_categories,
})
@property
def test_dataset(self):
label_categories = LabelCategories()
for i in range(5):
label_categories.add('cat' + str(i))

mask_categories = MaskCategories(
generate_colormap(len(label_categories.items)))

points_categories = PointsCategories()
for index, _ in enumerate(label_categories.items):
points_categories.add(index, ['cat1', 'cat2'], joints=[[0, 1]])

return Dataset.from_iterable([
DatasetItem(id=100, subset='train', image=np.ones((10, 6, 3)),
annotations=[
Caption('hello', id=1),
Caption('world', id=2, group=5),
Label(2, id=3, attributes={
'x': 1,
'y': '2',
}),
Bbox(1, 2, 3, 4, label=4, id=4, z_order=1, attributes={
'score': 1.0,
}),
Bbox(5, 6, 7, 8, id=5, group=5),
Points([1, 2, 2, 0, 1, 1], label=0, id=5, z_order=4),
Mask(label=3, id=5, z_order=2, image=np.ones((2, 3))),
]),
DatasetItem(id=21, subset='train',
annotations=[
Caption('test'),
Label(2),
Bbox(1, 2, 3, 4, 5, id=42, group=42)
]),

DatasetItem(id=2, subset='val',
annotations=[
PolyLine([1, 2, 3, 4, 5, 6, 7, 8], id=11, z_order=1),
Polygon([1, 2, 3, 4, 5, 6, 7, 8], id=12, z_order=4),
]),

DatasetItem(id=42, subset='test',
attributes={'a1': 5, 'a2': '42'}),

DatasetItem(id=42),
DatasetItem(id=43, image=Image(path='1/b/c.qq', size=(2, 4))),
], categories={
AnnotationType.label: label_categories,
AnnotationType.mask: mask_categories,
AnnotationType.points: points_categories,
})

def test_can_save_and_load(self):
with TestDir() as test_dir:
Expand Down

0 comments on commit 0062ecd

Please sign in to comment.