- Extract python APIs from darknet to maintain python wrapper easier.
Use with python-OP3
- Video object tracking using SiamMask
- Global NMS for all object (not each class)
- Object size threshold and class filtering
- MJPEG streaming for YOLO+SiamMask result on port 8091
- Auto labeling powered by YOLO+SiamMask.
- Compiled OpenCV with python wrapper and TrueType contrib module
You can download below files in Releases, and unzip to project root:
- Compiled darknet yolo_cpp_dll.dll
- CUDA Toolkit 10.1 + cuDNN 7.6.5
- the darknet weight you want to use (ex: yolov4.weight)
pip3 install --user -e .
from darknet_python.run_detector import ThreadingDetector
# First argument same as cv2.captureVideo() argument, here we use web camera.
# If not pass config_path, loading config of basename of weights by default.
# By default, it load meta file of coco.data.
ThreadingDetector(0, weights_path='yolov3.weights')
You can find additional examples on test/test_darknet.py
.
You can use pyinstaller to generate standalone executable
pyinstaller -F --add-binary "../lib;lib" --add-data "../darknet_video/cfg;darknet_video/cfg" --add-data "../darknet_video/data;darknet_video/data" --add-data "../weights;weights" .\test_darknet.py
Automating labeling use native detection ability of YOLO and SiamMask.
- click to select yolo box to candidate label
- frame by frame human check
- manual bbox selecting
- adjust yolo predict box