Skip to content

Commit

Permalink
Make normalize_depth_variables() parameters optional
Browse files Browse the repository at this point in the history
If `positive_down` or `deep_to_shallow` are none, those parts of the
depth variable are not normalized. Users can choose which aspects of the
depth variable to normalize.
  • Loading branch information
mx-moth committed Sep 21, 2023
1 parent d629fac commit 7cf5680
Show file tree
Hide file tree
Showing 4 changed files with 125 additions and 63 deletions.
8 changes: 7 additions & 1 deletion docs/releases/development.rst
Original file line number Diff line number Diff line change
Expand Up @@ -20,4 +20,10 @@ Next release (in development)
(:pr:`103`).
* Add :meth:`emsarray.plot.add_landmarks()`
and `landmarks` parameter to :meth:`Convention.plot` and related functions.
(:pr:`105`).
(:pr:`107`).
* Make the `positive_down` and `deep_to_shallow` parameters optional
for :func:`~emsarray.operations.depth.normalize_depth_variables`.
If not supplied, that feature of the depth variable is not normalized.
This is a breaking change if you previously relied
on the default value of `True` for these parameters.
(:pr:`108`).
5 changes: 4 additions & 1 deletion src/emsarray/conventions/_base.py
Original file line number Diff line number Diff line change
Expand Up @@ -1716,7 +1716,10 @@ def ocean_floor(self) -> xarray.Dataset:
non_spatial_variables=[self.get_time_name()])

def normalize_depth_variables(
self, positive_down: bool = True, deep_to_shallow: bool = True,
self,
*,
positive_down: Optional[bool] = None,
deep_to_shallow: Optional[bool] = None,
) -> xarray.Dataset:
"""An alias for :func:`emsarray.operations.depth.normalize_depth_variables`"""
return depth.normalize_depth_variables(
Expand Down
100 changes: 65 additions & 35 deletions src/emsarray/operations/depth.py
Original file line number Diff line number Diff line change
Expand Up @@ -197,39 +197,44 @@ def normalize_depth_variables(
dataset: xarray.Dataset,
depth_variables: List[Hashable],
*,
positive_down: bool = True,
deep_to_shallow: bool = True,
positive_down: Optional[bool] = None,
deep_to_shallow: Optional[bool] = None,
) -> xarray.Dataset:
"""
Some datasets represent depth as a positive variable, some as negative.
Some datasets sort depth layers from deepest to most shallow, others
from shallow to deep. :func:`normalize_depth_variables` will return
a new dataset with the depth variables normalized.
The default behaviour is for positive values to indicate deeper depths
(indicated via the variable attribute ``positive: "down"``),
and for the layers to be ordered deep to shallow.
This behaviour can be modified using the parameters
``positive_down`` and ``deep_to_shallow`` respectively.
All depth variables should have a ``positive: "up"`` or ``positive: "down"`` attribute.
If this attribute is missing,
a warning is generated and
a value is determined by examining the coordinate values.
Parameters
----------
dataset
dataset : xarray.Dataset
The dataset to normalize
depth_variables
depth_variables : list of Hashable
The names of the depth coordinate variables.
This should be the names of the variables, not the dimensions,
for datasets where these differ.
positive_down
When true (the default), positive values will indicate depth below the
surface. When false, negative values indicate depth below the surface.
deep_to_shallow
When true (the default), the layers are ordered such that deeper layers
have lower indices.
positive_down : bool, optional
If True, positive values will indicate depth below the surface.
If False, negative values indicate depth below the surface.
If None, this attribute of the depth coordinate is left unmodified.
deep_to_shallow : bool, optional
If True, the layers are ordered such that deeper layers have lower indices.
If False, the layers are ordered such that deeper layers have higher indices.
If None, this attribute of the depth coordinate is left unmodified.
Returns
-------
xarray.Dataset
A copy of the dataset with the depth variables normalized.
See Also
--------
:meth:`.Convention.normalize_depth_variables`
:meth:`.Convention.get_all_depth_names`
"""
Expand All @@ -244,23 +249,29 @@ def normalize_depth_variables(
dimension = variable.dims[0]

new_variable = new_dataset[name]
new_variable.attrs['positive'] = 'down' if positive_down else 'up'

positive_attr = variable.attrs.get('positive')
if positive_attr is None:
# This is a _depth_ variable. If there are more values >0 than <0,
# positive is probably down.
if positive_down is not None:
new_variable.attrs['positive'] = 'down' if positive_down else 'up'

if 'positive' in variable.attrs:
positive_attr = variable.attrs.get('positive')
data_positive_down = (positive_attr == 'down')
else:
# No positive attribute set.
# This is a violation of the CF conventions,
# however it is a very common violation and we can make a good guess.
# This is a _depth_ variable.
# If there are more values >0 than <0, positive is probably down.
total_values = len(variable.values)
positive_values = len(variable.values[variable.values > 0])
positive_attr = 'down' if positive_values > total_values / 2 else 'up'
data_positive_down = positive_values > (total_values / 2)

warnings.warn(
f"Depth variable {name!r} had no 'positive' attribute, "
f"guessing `positive: {positive_attr!r}`",
f"guessing `positive: {'down' if data_positive_down else 'up'!r}`",
stacklevel=2)

# Reverse the polarity
if (positive_attr == 'down') != positive_down:
if positive_down is not None and data_positive_down != positive_down:
# Reverse the polarity
new_values = -1 * new_variable.values
if name == dimension:
new_dataset = new_dataset.assign_coords({name: new_values})
Expand All @@ -273,15 +284,34 @@ def normalize_depth_variables(
})
new_variable = new_dataset[name]

# Check if the existing data goes from deep to shallow, correcting for
# the positive_down we just adjusted above. This assumes that depth
# data are monotonic across all values. If this is not the case,
# good luck.
d1, d2 = new_variable.values[0:2]
data_deep_to_shallow = (d1 > d2) == positive_down
try:
bounds_name = new_variable.attrs['bounds']
bounds_variable = new_dataset[bounds_name]
except KeyError:
pass
else:
new_dataset = new_dataset.assign({
bounds_name: (
bounds_variable.dims,
-1 * bounds_variable.values,
bounds_variable.attrs,
bounds_variable.encoding,
),
})

# Update this so the deep-to-shallow normalization can use it
data_positive_down = positive_down

if deep_to_shallow is not None:
# Check if the existing data goes from deep to shallow, correcting for
# the positive_down we just adjusted above. This assumes that depth
# data are monotonic across all values. If this is not the case,
# good luck.
d1, d2 = new_variable.values[0:2]
data_deep_to_shallow = (d1 > d2) == data_positive_down

# Flip the order of the coordinate
if data_deep_to_shallow != deep_to_shallow:
new_dataset = new_dataset.isel({dimension: numpy.s_[::-1]})
# Flip the order of the coordinate
if data_deep_to_shallow != deep_to_shallow:
new_dataset = new_dataset.isel({dimension: numpy.s_[::-1]})

return new_dataset
75 changes: 49 additions & 26 deletions tests/operations/depth/test_normalize_depth_variables.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,5 @@
from typing import Optional

import numpy
import pytest
import xarray
Expand All @@ -7,7 +9,7 @@


@pytest.mark.parametrize(
"input_depths,input_positive,input_deep_to_shallow", [
["input_depths", "input_positive", "input_deep_to_shallow"], [
([-1, +0, +1, +2, +3, +4], 'down', False),
([+4, +3, +2, +1, +0, -1], 'down', True),
([+1, +0, -1, -2, -3, -4], 'up', False),
Expand All @@ -16,31 +18,39 @@
)
@pytest.mark.parametrize("set_positive", [True, False])
@pytest.mark.parametrize(
["expected", "positive_down", "deep_to_shallow"], [
([+4, +3, +2, +1, +0, -1], True, True),
([-1, +0, +1, +2, +3, +4], True, False),
([-4, -3, -2, -1, +0, +1], False, True),
([+1, +0, -1, -2, -3, -4], False, False),
["positive_down", "deep_to_shallow"], [
(None, None),
(None, True),
(None, False),
(True, None),
(True, True),
(True, False),
(False, None),
(False, True),
(False, False),
],
)
def test_normalize_depth_variable(
input_depths: numpy.ndarray, input_positive: str, input_deep_to_shallow: bool,
input_depths: list[int],
input_positive: str,
input_deep_to_shallow: bool,
set_positive: bool,
expected: numpy.ndarray, positive_down: bool, deep_to_shallow: bool,
positive_down: Optional[bool],
deep_to_shallow: Optional[bool],
recwarn,
):
input_depths = input_depths[:]
# Some datasets have a coordinate with the same dimension name
positive_attr = {'positive': input_positive} if set_positive else {}
depth_coord = xarray.DataArray(
data=numpy.array(input_depths),
dims=['depth_coord'],
attrs={'positive': input_positive if set_positive else None, 'foo': 'bar'},
attrs={**positive_attr, 'foo': 'bar'},
)
# Some dimensions have different coordinate and dimension names
depth_name = xarray.DataArray(
data=numpy.array(input_depths),
dims=['depth_dimension'],
attrs={'positive': input_positive if set_positive else None, 'foo': 'bar'},
attrs={**positive_attr, 'foo': 'bar'},
)
values = numpy.arange(4 * 6 * 4).reshape(4, 6, 4)
dataset = xarray.Dataset(
Expand All @@ -57,32 +67,45 @@ def test_normalize_depth_variable(
)

out = normalize_depth_variables(
dataset, ['depth_coord', 'depth_name'],
positive_down=positive_down, deep_to_shallow=deep_to_shallow,
dataset,
['depth_coord', 'depth_name'],
positive_down=positive_down,
deep_to_shallow=deep_to_shallow,
)

expected_attrs = {'foo': 'bar'}
if positive_down is None:
if set_positive:
expected_attrs['positive'] = input_positive
elif positive_down:
expected_attrs['positive'] = 'down'
else:
expected_attrs['positive'] = 'up'

# Check that the values are reordered along the depth axis if required
expected_values = (
values[:, :, :] if (input_deep_to_shallow == deep_to_shallow)
else values[:, ::-1, :])
expected_values = values.copy()
if deep_to_shallow is not None and input_deep_to_shallow != deep_to_shallow:
expected_values = expected_values[:, ::-1, :]
assert_equal(out['values_coord'].values, expected_values)
assert_equal(out['values_dimension'].values, expected_values)

# Check that attributes on the depth coordinate were not clobbered
assert out['depth_coord'].attrs == {
'positive': 'down' if positive_down else 'up',
'foo': 'bar',
}
assert out['depth_name'].attrs == {
'positive': 'down' if positive_down else 'up',
'foo': 'bar',
}
assert out['depth_coord'].attrs == expected_attrs
assert out['depth_name'].attrs == expected_attrs

# Check the depth values are as expected
assert_equal(out['depth_coord'].values, expected)
# The depths should be similar to the inputs,
# possibly reversed and possibly negated depending on the input parameters.
expected_depths = numpy.array(input_depths)
if positive_down is not None and input_positive != expected_attrs['positive']:
expected_depths = -expected_depths
if deep_to_shallow is not None and input_deep_to_shallow != deep_to_shallow:
expected_depths = expected_depths[::-1]

assert_equal(out['depth_coord'].values, expected_depths)
assert out['depth_coord'].dims == ('depth_coord',)

assert_equal(out['depth_name'].values, expected)
assert_equal(out['depth_name'].values, expected_depths)
assert out['depth_name'].dims == ('depth_dimension',)

assert out.dims['depth_coord'] == 6
Expand Down

0 comments on commit 7cf5680

Please sign in to comment.