Skip to content

Commit

Permalink
The approximation of functions in the Sobolev space
Browse files Browse the repository at this point in the history
  • Loading branch information
crowlogic committed Jan 20, 2024
1 parent d35c20e commit f92ada2
Show file tree
Hide file tree
Showing 2 changed files with 175 additions and 0 deletions.
Binary file not shown.
Original file line number Diff line number Diff line change
@@ -0,0 +1,175 @@
<TeXmacs|2.1.1>

<style|<tuple|generic|alt-colors|boring-white|framed-theorems>>

<\body>
\;

<section*|The approximation of functions in the Sobolev space>

Suppose <math|\<Omega\>=<around|[|0,1|]>>, then for any
<math|\<gamma\>\<in\>\<bbb-N\><rsub|0>> (the set of all non-negative
integers), the weighted Sobolev space <math|H<rsub|w><rsup|\<gamma\>><around|(|\<Omega\>|)>>
can be defined in the usual way, which indicates its inner product,
semi-norm and norm by

<\equation>
<around|(|u,v|)><rsub|w,\<Omega\>><rsup|<around|(|\<gamma\>|)>>
</equation>

<\equation>
<around|\||v|\|><rsub|w,\<Omega\>><rsup|<around|(|\<gamma\>|)>>
</equation>

and

<\equation>
<around|\<\|\|\>|v|\<\|\|\>><rsub|w,\<Omega\>><rsup|<around|(|\<gamma\>|)>>
</equation>

respectively. In particular,

<\equation>
L<rsub|2><around|(|\<Omega\>|)>=H<rsub|w><rsup|0><around|(|\<Omega\>|)>
</equation>

<\equation>
<around|\<\|\|\>|v|\<\|\|\>><rsub|w,\<Omega\>>=<around|\<\|\|\>|v|\<\|\|\>><rsub|w,\<Omega\>><rsup|<around|(|0|)>>
</equation>

and

<\equation>
H<rsub|w><rsup|\<gamma\>><around|(|\<Omega\>|)>=<around|{|f\<mid\>f<text|can
be measured>,<around|\<\|\|\>|f|\<\|\|\>><rsub|w,\<Omega\>>\<less\>\<infty\>|}>
</equation>

\;

<\equation>
<around|\<\|\|\>|f|\<\|\|\>><rsub|w,\<Omega\>><rsup|\<gamma\>>=<sqrt|<around*|(|<big|sum><rsub|i=0><rsup|\<infty\>><around|\||f<rsup|<around|(|i|)>>|\|><rsup|2><rsub|w,\<Omega\>>|)>>
</equation>

<\equation>
<around|\||f|\|><rsub|w,\<Omega\>><rsup|\<gamma\>>=<around|\||f<rsup|<around|(|\<gamma\>|)>>|\|><rsub|w,\<Omega\>>
</equation>

Now we can suppose the function <math|f\<in\>H<rsub|w><rsup|\<gamma\>><around|(|\<Omega\>|)>>
in

<\equation>
p<rsub|m,\<alpha\>,\<beta\>><around|(|\<Omega\>|)>=<text|span><around|{|p<rsub|0><rsup|\<alpha\>,\<beta\>><around|(|x|)>,p<rsub|1><rsup|\<alpha\>,\<beta\>><around|(|x|)>,\<ldots\>,p<rsub|m><rsup|\<alpha\>,\<beta\>><around|(|x|)>|}><text|>
</equation>

as presented in the following formula:

<\equation>
f<around|(|x|)>=<big|sum><rsub|i=0><rsup|\<infty\>>k<rsub|i>*p<rsub|i><rsup|\<alpha\>,\<beta\>><around|(|x|)><text|>
</equation>

In which the coefficients <math|k<rsub|i>> are generated by:

<\equation>
k<rsub|i>=<frac|1|g<rsub|i><rsup|2>>*<big|int><rsub|0><rsup|1>p<rsub|i><rsup|\<alpha\>,\<beta\>><around|(|x|)>*w<rsub|\<alpha\>,\<beta\>><around|(|x|)>*d*x,<space|1em>i=0,\<ldots\>.<text|>
</equation>

In practice, only the first <math|m>-terms shifted Jacobi polynomials are
taken into account. Then we have:

<\equation>
f<around|(|x|)>=<big|sum><rsub|i=0><rsup|m-1>k<rsub|i>*p<rsub|i><rsup|\<alpha\>,\<beta\>><around|(|x|)>=K<rsup|T>*P<text|>
</equation>

with

<\equation>
K=<around|[|k<rsub|0>,k<rsub|1>,\<ldots\>,k<rsub|m-1>|]><rsup|T>,<space|1em>P=<around|[|p<rsub|0><rsup|\<alpha\>,\<beta\>><around|(|x|)>,p<rsub|1><rsup|\<alpha\>,\<beta\>><around|(|x|)>,\<ldots\>,p<rsub|m-1><rsup|\<alpha\>,\<beta\>><around|(|x|)>|]><text|>
</equation>

In as much as <math|p<rsub|m,\<alpha\>,\<beta\>>> is a finite dimensional
vector space, <math|f> has a unique best approximation from
<math|p<rsub|m,\<alpha\>,\<beta\>>>, say
<math|f<rsub|m><around|(|x|)>\<in\>p<rsub|m,\<alpha\>,\<beta\>>> that is:

<\equation>
\<forall\>y\<in\>p<rsub|m,\<alpha\>,\<beta\>>,<around|\<\|\|\>|f<around|(|x|)>-f<rsub|m><around|(|x|)>|\<\|\|\>><rsub|w,\<Omega\>>\<leq\><around|\<\|\|\>|f<around|(|x|)>-y|\<\|\|\>><rsub|w,\<Omega\>><text|>
</equation>

Guo and Wang (2004), came to the conclusion that for any
<math|f\<in\>H<rsub|w><rsup|\<gamma\>><around|(|\<Omega\>|)>>,
<math|\<gamma\>\<in\>\<bbb-N\><rsub|0>> and
<math|0\<leq\>\<mu\>\<leq\>\<gamma\>>, a generic positive constant <math|C>
independent of any function, <math|m>, <math|\<alpha\>> and <math|\<beta\>>
exists so that:

<\equation>
<around|\<\|\|\>|f<around|(|x|)>-f<rsub|m><around|(|x|)>|\<\|\|\>><rsub|w,\<Omega\>><rsup|\<gamma\>,\<mu\>>\<leq\>C*<around|(|<around|(|m-1|)>*\<Gamma\>*<around|(|\<alpha\>+\<beta\>+1|)>|)><rsup|-\<mu\>><frac|1|2><around|\||f|\|><rsub|w,\<Omega\>><rsup|\<gamma\>><text|>
</equation>

<section*|The operational matrix of fractional integral>

We can express Riemann-Liouville fractional integral operator of order
<math|\<mu\>> of the vector by:

<\equation>
I<rsup|\<mu\>>*P\<approx\>Q<rsup|<around|(|\<mu\>|)>>*P<text|>
</equation>

where <math|Q<rsup|<around|(|\<mu\>|)>>> is the <math|m\<times\>n>
operational matrix of Riemann-Liouville fractional integral of order
<math|\<mu\>>.

<subsection*|Theorem 3.1.>

If <math|Q<rsup|<around|(|\<mu\>|)>>> is the <math|m\<times\>n> operational
matrix of Riemann-Liouville fractional integral of order <math|\<mu\>>,
then the elements of this matrix are taken as:

<\equation>
Q<rsup|<around|(|\<mu\>|)>><rsub|i,j>=<around*|{|q<rsub|i,j><rsup|<around|(|\<mu\>|)>>|}><rsub|i,j=0><rsup|n-1>=<big|sum><rsub|k=0><rsup|i><binom|i|k>P<rsub|i-k><rsup|<around|(|\<mu\>|)>><around|(|j|)>*<around*|[|\<Gamma\>*<around|(|k+1|)>*B<around|(|k+l+\<mu\>+\<beta\>+1,\<alpha\>+1|)>|]><text|>
</equation>

Now, we define the error vector <math|E>, as

<\equation>
E=I<rsup|\<mu\>>*P-Q<rsup|<around|(|\<mu\>|)>>*P<text|>
</equation>
</body>

<\initial>
<\collection>
<associate|magnification|1.2>
<associate|page-height|auto>
<associate|page-medium|paper>
<associate|page-type|letter>
<associate|page-width|auto>
</collection>
</initial>

<\references>
<\collection>
<associate|auto-1|<tuple|?|1|../../.TeXmacs/texts/scratch/no_name_18.tm>>
<associate|auto-2|<tuple|15|2|../../.TeXmacs/texts/scratch/no_name_18.tm>>
<associate|auto-3|<tuple|16|2|../../.TeXmacs/texts/scratch/no_name_18.tm>>
</collection>
</references>

<\auxiliary>
<\collection>
<\associate|toc>
<vspace*|1fn><with|font-series|<quote|bold>|math-font-series|<quote|bold>|The
approximation of functions in the Sobolev space>
<datoms|<macro|x|<repeat|<arg|x>|<with|font-series|medium|<with|font-size|1|<space|0.2fn>.<space|0.2fn>>>>>|<htab|5mm>>
<no-break><pageref|auto-1><vspace|0.5fn>

<vspace*|1fn><with|font-series|<quote|bold>|math-font-series|<quote|bold>|The
operational matrix of fractional integral>
<datoms|<macro|x|<repeat|<arg|x>|<with|font-series|medium|<with|font-size|1|<space|0.2fn>.<space|0.2fn>>>>>|<htab|5mm>>
<no-break><pageref|auto-2><vspace|0.5fn>

<with|par-left|<quote|1tab>|Theorem 3.1.
<datoms|<macro|x|<repeat|<arg|x>|<with|font-series|medium|<with|font-size|1|<space|0.2fn>.<space|0.2fn>>>>>|<htab|5mm>>
<no-break><pageref|auto-3>>
</associate>
</collection>
</auxiliary>

0 comments on commit f92ada2

Please sign in to comment.