-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
The approximation of functions in the Sobolev space
- Loading branch information
Showing
2 changed files
with
175 additions
and
0 deletions.
There are no files selected for viewing
Binary file added
BIN
+51 KB
docs/JacobiPolynomialSolutionForFractionalRiccatiDifferentialEquations.pdf
Binary file not shown.
175 changes: 175 additions & 0 deletions
175
docs/JacobiPolynomialSolutionForFractionalRiccatiDifferentialEquations.tm
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,175 @@ | ||
<TeXmacs|2.1.1> | ||
|
||
<style|<tuple|generic|alt-colors|boring-white|framed-theorems>> | ||
|
||
<\body> | ||
\; | ||
|
||
<section*|The approximation of functions in the Sobolev space> | ||
|
||
Suppose <math|\<Omega\>=<around|[|0,1|]>>, then for any | ||
<math|\<gamma\>\<in\>\<bbb-N\><rsub|0>> (the set of all non-negative | ||
integers), the weighted Sobolev space <math|H<rsub|w><rsup|\<gamma\>><around|(|\<Omega\>|)>> | ||
can be defined in the usual way, which indicates its inner product, | ||
semi-norm and norm by | ||
|
||
<\equation> | ||
<around|(|u,v|)><rsub|w,\<Omega\>><rsup|<around|(|\<gamma\>|)>> | ||
</equation> | ||
|
||
<\equation> | ||
<around|\||v|\|><rsub|w,\<Omega\>><rsup|<around|(|\<gamma\>|)>> | ||
</equation> | ||
|
||
and | ||
|
||
<\equation> | ||
<around|\<\|\|\>|v|\<\|\|\>><rsub|w,\<Omega\>><rsup|<around|(|\<gamma\>|)>> | ||
</equation> | ||
|
||
respectively. In particular, | ||
|
||
<\equation> | ||
L<rsub|2><around|(|\<Omega\>|)>=H<rsub|w><rsup|0><around|(|\<Omega\>|)> | ||
</equation> | ||
|
||
<\equation> | ||
<around|\<\|\|\>|v|\<\|\|\>><rsub|w,\<Omega\>>=<around|\<\|\|\>|v|\<\|\|\>><rsub|w,\<Omega\>><rsup|<around|(|0|)>> | ||
</equation> | ||
|
||
and | ||
|
||
<\equation> | ||
H<rsub|w><rsup|\<gamma\>><around|(|\<Omega\>|)>=<around|{|f\<mid\>f<text|can | ||
be measured>,<around|\<\|\|\>|f|\<\|\|\>><rsub|w,\<Omega\>>\<less\>\<infty\>|}> | ||
</equation> | ||
|
||
\; | ||
|
||
<\equation> | ||
<around|\<\|\|\>|f|\<\|\|\>><rsub|w,\<Omega\>><rsup|\<gamma\>>=<sqrt|<around*|(|<big|sum><rsub|i=0><rsup|\<infty\>><around|\||f<rsup|<around|(|i|)>>|\|><rsup|2><rsub|w,\<Omega\>>|)>> | ||
</equation> | ||
|
||
<\equation> | ||
<around|\||f|\|><rsub|w,\<Omega\>><rsup|\<gamma\>>=<around|\||f<rsup|<around|(|\<gamma\>|)>>|\|><rsub|w,\<Omega\>> | ||
</equation> | ||
|
||
Now we can suppose the function <math|f\<in\>H<rsub|w><rsup|\<gamma\>><around|(|\<Omega\>|)>> | ||
in | ||
|
||
<\equation> | ||
p<rsub|m,\<alpha\>,\<beta\>><around|(|\<Omega\>|)>=<text|span><around|{|p<rsub|0><rsup|\<alpha\>,\<beta\>><around|(|x|)>,p<rsub|1><rsup|\<alpha\>,\<beta\>><around|(|x|)>,\<ldots\>,p<rsub|m><rsup|\<alpha\>,\<beta\>><around|(|x|)>|}><text|> | ||
</equation> | ||
|
||
as presented in the following formula: | ||
|
||
<\equation> | ||
f<around|(|x|)>=<big|sum><rsub|i=0><rsup|\<infty\>>k<rsub|i>*p<rsub|i><rsup|\<alpha\>,\<beta\>><around|(|x|)><text|> | ||
</equation> | ||
|
||
In which the coefficients <math|k<rsub|i>> are generated by: | ||
|
||
<\equation> | ||
k<rsub|i>=<frac|1|g<rsub|i><rsup|2>>*<big|int><rsub|0><rsup|1>p<rsub|i><rsup|\<alpha\>,\<beta\>><around|(|x|)>*w<rsub|\<alpha\>,\<beta\>><around|(|x|)>*d*x,<space|1em>i=0,\<ldots\>.<text|> | ||
</equation> | ||
|
||
In practice, only the first <math|m>-terms shifted Jacobi polynomials are | ||
taken into account. Then we have: | ||
|
||
<\equation> | ||
f<around|(|x|)>=<big|sum><rsub|i=0><rsup|m-1>k<rsub|i>*p<rsub|i><rsup|\<alpha\>,\<beta\>><around|(|x|)>=K<rsup|T>*P<text|> | ||
</equation> | ||
|
||
with | ||
|
||
<\equation> | ||
K=<around|[|k<rsub|0>,k<rsub|1>,\<ldots\>,k<rsub|m-1>|]><rsup|T>,<space|1em>P=<around|[|p<rsub|0><rsup|\<alpha\>,\<beta\>><around|(|x|)>,p<rsub|1><rsup|\<alpha\>,\<beta\>><around|(|x|)>,\<ldots\>,p<rsub|m-1><rsup|\<alpha\>,\<beta\>><around|(|x|)>|]><text|> | ||
</equation> | ||
|
||
In as much as <math|p<rsub|m,\<alpha\>,\<beta\>>> is a finite dimensional | ||
vector space, <math|f> has a unique best approximation from | ||
<math|p<rsub|m,\<alpha\>,\<beta\>>>, say | ||
<math|f<rsub|m><around|(|x|)>\<in\>p<rsub|m,\<alpha\>,\<beta\>>> that is: | ||
|
||
<\equation> | ||
\<forall\>y\<in\>p<rsub|m,\<alpha\>,\<beta\>>,<around|\<\|\|\>|f<around|(|x|)>-f<rsub|m><around|(|x|)>|\<\|\|\>><rsub|w,\<Omega\>>\<leq\><around|\<\|\|\>|f<around|(|x|)>-y|\<\|\|\>><rsub|w,\<Omega\>><text|> | ||
</equation> | ||
|
||
Guo and Wang (2004), came to the conclusion that for any | ||
<math|f\<in\>H<rsub|w><rsup|\<gamma\>><around|(|\<Omega\>|)>>, | ||
<math|\<gamma\>\<in\>\<bbb-N\><rsub|0>> and | ||
<math|0\<leq\>\<mu\>\<leq\>\<gamma\>>, a generic positive constant <math|C> | ||
independent of any function, <math|m>, <math|\<alpha\>> and <math|\<beta\>> | ||
exists so that: | ||
|
||
<\equation> | ||
<around|\<\|\|\>|f<around|(|x|)>-f<rsub|m><around|(|x|)>|\<\|\|\>><rsub|w,\<Omega\>><rsup|\<gamma\>,\<mu\>>\<leq\>C*<around|(|<around|(|m-1|)>*\<Gamma\>*<around|(|\<alpha\>+\<beta\>+1|)>|)><rsup|-\<mu\>><frac|1|2><around|\||f|\|><rsub|w,\<Omega\>><rsup|\<gamma\>><text|> | ||
</equation> | ||
|
||
<section*|The operational matrix of fractional integral> | ||
|
||
We can express Riemann-Liouville fractional integral operator of order | ||
<math|\<mu\>> of the vector by: | ||
|
||
<\equation> | ||
I<rsup|\<mu\>>*P\<approx\>Q<rsup|<around|(|\<mu\>|)>>*P<text|> | ||
</equation> | ||
|
||
where <math|Q<rsup|<around|(|\<mu\>|)>>> is the <math|m\<times\>n> | ||
operational matrix of Riemann-Liouville fractional integral of order | ||
<math|\<mu\>>. | ||
|
||
<subsection*|Theorem 3.1.> | ||
|
||
If <math|Q<rsup|<around|(|\<mu\>|)>>> is the <math|m\<times\>n> operational | ||
matrix of Riemann-Liouville fractional integral of order <math|\<mu\>>, | ||
then the elements of this matrix are taken as: | ||
|
||
<\equation> | ||
Q<rsup|<around|(|\<mu\>|)>><rsub|i,j>=<around*|{|q<rsub|i,j><rsup|<around|(|\<mu\>|)>>|}><rsub|i,j=0><rsup|n-1>=<big|sum><rsub|k=0><rsup|i><binom|i|k>P<rsub|i-k><rsup|<around|(|\<mu\>|)>><around|(|j|)>*<around*|[|\<Gamma\>*<around|(|k+1|)>*B<around|(|k+l+\<mu\>+\<beta\>+1,\<alpha\>+1|)>|]><text|> | ||
</equation> | ||
|
||
Now, we define the error vector <math|E>, as | ||
|
||
<\equation> | ||
E=I<rsup|\<mu\>>*P-Q<rsup|<around|(|\<mu\>|)>>*P<text|> | ||
</equation> | ||
</body> | ||
|
||
<\initial> | ||
<\collection> | ||
<associate|magnification|1.2> | ||
<associate|page-height|auto> | ||
<associate|page-medium|paper> | ||
<associate|page-type|letter> | ||
<associate|page-width|auto> | ||
</collection> | ||
</initial> | ||
|
||
<\references> | ||
<\collection> | ||
<associate|auto-1|<tuple|?|1|../../.TeXmacs/texts/scratch/no_name_18.tm>> | ||
<associate|auto-2|<tuple|15|2|../../.TeXmacs/texts/scratch/no_name_18.tm>> | ||
<associate|auto-3|<tuple|16|2|../../.TeXmacs/texts/scratch/no_name_18.tm>> | ||
</collection> | ||
</references> | ||
|
||
<\auxiliary> | ||
<\collection> | ||
<\associate|toc> | ||
<vspace*|1fn><with|font-series|<quote|bold>|math-font-series|<quote|bold>|The | ||
approximation of functions in the Sobolev space> | ||
<datoms|<macro|x|<repeat|<arg|x>|<with|font-series|medium|<with|font-size|1|<space|0.2fn>.<space|0.2fn>>>>>|<htab|5mm>> | ||
<no-break><pageref|auto-1><vspace|0.5fn> | ||
|
||
<vspace*|1fn><with|font-series|<quote|bold>|math-font-series|<quote|bold>|The | ||
operational matrix of fractional integral> | ||
<datoms|<macro|x|<repeat|<arg|x>|<with|font-series|medium|<with|font-size|1|<space|0.2fn>.<space|0.2fn>>>>>|<htab|5mm>> | ||
<no-break><pageref|auto-2><vspace|0.5fn> | ||
|
||
<with|par-left|<quote|1tab>|Theorem 3.1. | ||
<datoms|<macro|x|<repeat|<arg|x>|<with|font-series|medium|<with|font-size|1|<space|0.2fn>.<space|0.2fn>>>>>|<htab|5mm>> | ||
<no-break><pageref|auto-3>> | ||
</associate> | ||
</collection> | ||
</auxiliary> |