-
Notifications
You must be signed in to change notification settings - Fork 1k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: add standard deviation udf (#6845)
* feat: add standard deviation udf * Adding qtt test * docs fix * new name + historical plans * sergio and nick's comments * updating qtt
- Loading branch information
Showing
16 changed files
with
2,389 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
199 changes: 199 additions & 0 deletions
199
...ngine/src/main/java/io/confluent/ksql/function/udaf/stddev/StandardDeviationSampUdaf.java
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,199 @@ | ||
/* | ||
* Copyright 2021 Confluent Inc. | ||
* | ||
* Licensed under the Confluent Community License (the "License"); you may not use | ||
* this file except in compliance with the License. You may obtain a copy of the | ||
* License at | ||
* | ||
* http://www.confluent.io/confluent-community-license | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT | ||
* WARRANTIES OF ANY KIND, either express or implied. See the License for the | ||
* specific language governing permissions and limitations under the License. | ||
*/ | ||
|
||
package io.confluent.ksql.function.udaf.stddev; | ||
|
||
import io.confluent.ksql.function.udaf.TableUdaf; | ||
import io.confluent.ksql.function.udaf.UdafDescription; | ||
import io.confluent.ksql.function.udaf.UdafFactory; | ||
import io.confluent.ksql.util.KsqlConstants; | ||
|
||
import java.util.function.BiFunction; | ||
import org.apache.kafka.connect.data.Schema; | ||
import org.apache.kafka.connect.data.SchemaBuilder; | ||
import org.apache.kafka.connect.data.Struct; | ||
|
||
@UdafDescription(name = "STDDEV_SAMP", | ||
description = "Returns the sample standard deviation of the column. " | ||
+ | ||
"Applicable only to numeric types.", | ||
author = KsqlConstants.CONFLUENT_AUTHOR | ||
) | ||
public final class StandardDeviationSampUdaf { | ||
|
||
private static final String COUNT = "COUNT"; | ||
private static final String SUM = "SUM"; | ||
private static final String M2 = "M2"; | ||
private static final Schema STRUCT_LONG = SchemaBuilder.struct().optional() | ||
.field(SUM, Schema.OPTIONAL_INT64_SCHEMA) | ||
.field(COUNT, Schema.OPTIONAL_INT64_SCHEMA) | ||
.field(M2, Schema.OPTIONAL_FLOAT64_SCHEMA) | ||
.build(); | ||
|
||
private static final Schema STRUCT_INT = SchemaBuilder.struct().optional() | ||
.field(SUM, Schema.OPTIONAL_INT32_SCHEMA) | ||
.field(COUNT, Schema.OPTIONAL_INT64_SCHEMA) | ||
.field(M2, Schema.OPTIONAL_FLOAT64_SCHEMA) | ||
.build(); | ||
|
||
private static final Schema STRUCT_DOUBLE = SchemaBuilder.struct().optional() | ||
.field(SUM, Schema.OPTIONAL_FLOAT64_SCHEMA) | ||
.field(COUNT, Schema.OPTIONAL_INT64_SCHEMA) | ||
.field(M2, Schema.OPTIONAL_FLOAT64_SCHEMA) | ||
.build(); | ||
|
||
private StandardDeviationSampUdaf() { | ||
} | ||
|
||
@UdafFactory(description = "Compute sample standard deviation of column with type Long.", | ||
aggregateSchema = "STRUCT<SUM bigint, COUNT bigint, M2 double>") | ||
public static TableUdaf<Long, Struct, Double> stdDevLong() { | ||
return getStdDevImplementation( | ||
0L, | ||
STRUCT_LONG, | ||
(agg, newValue) -> newValue + agg.getInt64(SUM), | ||
(agg, newValue) -> | ||
Double.valueOf(newValue * (agg.getInt64(COUNT) + 1) - (agg.getInt64(SUM) + newValue)), | ||
(agg1, agg2) -> | ||
Double.valueOf( | ||
agg1.getInt64(SUM) / agg1.getInt64(COUNT) | ||
- agg2.getInt64(SUM) / agg2.getInt64(COUNT)), | ||
(agg1, agg2) -> agg1.getInt64(SUM) + agg2.getInt64(SUM), | ||
(agg, valueToRemove) -> agg.getInt64(SUM) - valueToRemove); | ||
} | ||
|
||
@UdafFactory(description = "Compute sample standard deviation of column with type Integer.", | ||
aggregateSchema = "STRUCT<SUM integer, COUNT bigint, M2 double>") | ||
public static TableUdaf<Integer, Struct, Double> stdDevInt() { | ||
return getStdDevImplementation( | ||
0, | ||
STRUCT_INT, | ||
(agg, newValue) -> newValue + agg.getInt32(SUM), | ||
(agg, newValue) -> | ||
Double.valueOf(newValue * (agg.getInt64(COUNT) + 1) - (agg.getInt32(SUM) + newValue)), | ||
(agg1, agg2) -> | ||
Double.valueOf( | ||
agg1.getInt32(SUM) / agg1.getInt64(COUNT) | ||
- agg2.getInt32(SUM) / agg2.getInt64(COUNT)), | ||
(agg1, agg2) -> agg1.getInt32(SUM) + agg2.getInt32(SUM), | ||
(agg, valueToRemove) -> agg.getInt32(SUM) - valueToRemove); | ||
} | ||
|
||
@UdafFactory(description = "Compute sample standard deviation of column with type Double.", | ||
aggregateSchema = "STRUCT<SUM double, COUNT bigint, M2 double>") | ||
public static TableUdaf<Double, Struct, Double> stdDevDouble() { | ||
return getStdDevImplementation( | ||
0.0, | ||
STRUCT_DOUBLE, | ||
(agg, newValue) -> newValue + agg.getFloat64(SUM), | ||
(agg, newValue) -> newValue * (agg.getInt64(COUNT) + 1) - (agg.getFloat64(SUM) + newValue), | ||
(agg1, agg2) -> | ||
agg1.getFloat64(SUM) / agg1.getInt64(COUNT) | ||
- agg2.getFloat64(SUM) / agg2.getInt64(COUNT), | ||
(agg1, agg2) -> agg1.getFloat64(SUM) + agg2.getFloat64(SUM), | ||
(agg, valueToRemove) -> agg.getFloat64(SUM) - valueToRemove); | ||
} | ||
|
||
private static <I> TableUdaf<I, Struct, Double> getStdDevImplementation( | ||
final I initialValue, | ||
final Schema structSchema, | ||
final BiFunction<Struct, I, I> add, | ||
final BiFunction<Struct, I, Double> createDelta, | ||
final BiFunction<Struct, Struct, Double> mergeInner, | ||
final BiFunction<Struct, Struct, I> mergeSum, | ||
final BiFunction<Struct, I, I> undoSum) { | ||
return new TableUdaf<I, Struct, Double>() { | ||
|
||
@Override | ||
public Struct initialize() { | ||
return new Struct(structSchema).put(SUM, initialValue).put(COUNT, 0L).put(M2, 0.0); | ||
} | ||
|
||
@Override | ||
public Struct aggregate(final I newValue, final Struct aggregate) { | ||
// Uses the Youngs-Cramer algorithm to calculate standard deviation | ||
if (newValue == null) { | ||
return aggregate; | ||
} | ||
final long newCount = aggregate.getInt64(COUNT) + 1; | ||
final double newM2; | ||
|
||
if (newCount - 1 > 0) { | ||
final double delta = createDelta.apply(aggregate, newValue); | ||
newM2 = delta * delta / (newCount * (newCount - 1)); | ||
} else { | ||
// processing the first item | ||
newM2 = 0; | ||
} | ||
|
||
return new Struct(structSchema) | ||
.put(COUNT, newCount) | ||
.put(SUM, add.apply(aggregate, newValue)) | ||
.put(M2, newM2 + aggregate.getFloat64(M2)); | ||
} | ||
|
||
@Override | ||
public Struct merge(final Struct aggOne, final Struct aggTwo) { | ||
final long countOne = aggOne.getInt64(COUNT); | ||
final long countTwo = aggTwo.getInt64(COUNT); | ||
|
||
final double m2One = aggOne.getFloat64(M2); | ||
final double m2Two = aggTwo.getFloat64(M2); | ||
final long newCount = countOne + countTwo; | ||
final double newM2; | ||
|
||
if (countOne == 0 || countTwo == 0) { | ||
newM2 = m2One + m2Two; | ||
} else { | ||
final double innerCalc = mergeInner.apply(aggOne, aggTwo); | ||
newM2 = m2One + m2Two + countOne * countTwo * innerCalc * innerCalc / newCount; | ||
} | ||
|
||
return new Struct(structSchema) | ||
.put(COUNT, newCount) | ||
.put(SUM, mergeSum.apply(aggOne, aggTwo)) | ||
.put(M2, newM2); | ||
} | ||
|
||
@Override | ||
public Double map(final Struct aggregate) { | ||
final long count = aggregate.getInt64(COUNT); | ||
if (count < 2) { | ||
return 0.0; | ||
} | ||
return aggregate.getFloat64(M2) / (count - 1); | ||
} | ||
|
||
@Override | ||
public Struct undo(final I valueToUndo, final Struct aggregate) { | ||
if (valueToUndo == null) { | ||
return aggregate; | ||
} | ||
final long newCount = aggregate.getInt64(COUNT) - 1; | ||
final double newM2; | ||
if (newCount > 0) { | ||
final double delta = createDelta.apply(aggregate, valueToUndo); | ||
newM2 = delta * delta / (newCount * (newCount + 1)); | ||
} else { | ||
newM2 = 0; | ||
} | ||
return new Struct(structSchema) | ||
.put(COUNT, newCount) | ||
.put(SUM, undoSum.apply(aggregate, valueToUndo)) | ||
.put(M2, aggregate.getFloat64(M2) - newM2); | ||
} | ||
}; | ||
} | ||
} |
Oops, something went wrong.