Skip to content
/ apl Public

Open source implementation of Adaptive Posterior Learning (ICLR 2019)

License

Notifications You must be signed in to change notification settings

cogentlabs/apl

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Adaptive Posterior Learning: few-shot learning with a surprise-based memory module

Open source implementation of the Omniglot experiments in Adaptive Posterior Learning (ICLR 2019).

This code has been reimplemented in PyTorch from the original TensorFlow implementation. Results may vary slightly from those reported in the paper.

The authors thank Roman Lyapin for help with implementing parts of this codebase.

How to run

Run train.py to train a classification model. Default hyperparameters are sensible and will result in a good performance. We recommend first training for 200 classes and then reusing that encoder for the desired final number of classes.

test.py demonstrates how to test the model either in the online setting, or in the case of a fixed context size (as is done in most meta-learning papers).

If you use this code, please cite:

Tiago Ramalho, Marta Garnelo
Adaptive Posterior Learning: few-shot learning with a surprise-based memory module
In the proceedings of the International Conference on Learning Representations (ICLR), 2019.

About

Open source implementation of Adaptive Posterior Learning (ICLR 2019)

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages