Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

kv: apply log entries outside of raft state machine loop #94854

Open
nvanbenschoten opened this issue Jan 6, 2023 · 4 comments
Open

kv: apply log entries outside of raft state machine loop #94854

nvanbenschoten opened this issue Jan 6, 2023 · 4 comments
Labels
A-kv-replication Relating to Raft, consensus, and coordination. C-performance Perf of queries or internals. Solution not expected to change functional behavior. T-kv KV Team

Comments

@nvanbenschoten
Copy link
Member

nvanbenschoten commented Jan 6, 2023

Extracted from #17500.

After #94165, raft log entry disk writes are asynchronous with respect to the raft state machine loop. However, the (non-durable) engine access for state machine application is still performed inline. The async storage writes interface permits us to extract all of this work onto a separate goroutine.

This would provide three benefits:

  1. faster state machine loop iteration => less interference between entries => lower latency
  2. larger apply batches => more efficient state machine application => higher throughput
  3. flexible scheduling permits deferred application on followers => bigger batches, see benefit 2

Jira issue: CRDB-23189

Epic CRDB-39898

@nvanbenschoten nvanbenschoten added C-performance Perf of queries or internals. Solution not expected to change functional behavior. A-kv-replication Relating to Raft, consensus, and coordination. T-kv-replication labels Jan 6, 2023
@blathers-crl
Copy link

blathers-crl bot commented Jan 6, 2023

cc @cockroachdb/replication

craig bot pushed a commit that referenced this issue Feb 3, 2023
94165: kv: integrate raft async storage writes r=nvanbenschoten a=nvanbenschoten

Fixes #17500.
Epic: CRDB-22644

This commit integrates with the `AsyncStorageWrites` functionality that we added to Raft in etcd-io/raft/pull/8. 

## Approach

The commit makes the minimal changes needed to integrate with async storage writes and pull fsyncs out of the raft state machine loop. It does not make an effort to extract the non-durable portion of raft log writes or raft log application onto separate goroutine pools, as was described in #17500. Those changes will also be impactful, but they're non trivial and bump into a pipelining vs. batching trade-off, so they are left as future work items. See #94853 and #94854.

With this change, asynchronous Raft log syncs are enabled by the new `DB.ApplyNoSyncWait` Pebble API introduced in cockroachdb/pebble/pull/2117.  The `handleRaftReady` state machine loop continues to initiate Raft log writes, but it uses the Pebble API to offload waiting on durability to a separate goroutine. This separate goroutine then sends the corresponding `MsgStorageAppend`'s response messages where they need to go (locally and/or to the Raft leader) when the fsync completes. The async storage writes functionality in Raft makes this all safe.

## Benchmark Results

The result of this change is reduced interference between Raft proposals. As a result, it reduces end-to-end commit latency.

etcd-io/raft/pull/8 presented a collection of benchmark results captured from integrating async storage writes with rafttoy.

When integrated into CockroachDB, we see similar improvements to average and tail latency. However, it doesn't provide the throughput improvements at the top end because log appends and state machine application have not yet been extracted into separate goroutine pools, which would facilitate an increased opportunity for batching.

To visualize the impact on latency, consider the following test. The experiment uses a 3-node GCP cluster with n2-standard-32 instances spread across three availability zones. It runs kv0 (write-only) against the cluster with 64-byte values. It then ramps up concurrency to compare throughput vs. average and tail latency.

_NOTE: log scales on x and y axes_

![Throughput vs  average latency of write-only workload](https://user-images.githubusercontent.com/5438456/209210719-bec842f6-1093-48cd-8be7-05a3d79c2a71.svg)

![Throughput vs  tail latency of write-only workload](https://user-images.githubusercontent.com/5438456/209210777-670a4d25-9516-41a2-b7e7-86b402004536.svg)

Async storage writes impacts latency by different amounts at different throughputs, ranging from an improvement of 20% to 40% when the system is "well utilized". However, it increases latency by 5% to 10% when the system is over-saturated and CPU bound, presumably because of the extra goroutine handoff to the log append fsync callback, which will be impacted by elevated goroutine scheduling latency.

| Throughput (B/s) | Throughput (qps) | Avg. Latency Δ | p99 Latency Δ |
| ---------------- | ---------------- | -------------- | ------------- |
| 63  KB/s         | 1,000            | -10.5%         | -8.8%         |
| 125 KB/s         | 2,000            | -7.1%          | -10.4%        |
| 250 KB/s         | 4,000            | -20%           | -11.2%        |
| 500 KB/s         | 8,000            | -16.6%         | -25.3%        |
| 1 MB/s           | 16,000           | -30.8%         | -44.0%        |
| 2 MB/s           | 32,000           | -38.2%         | -30.9%        |
| 4 MB/s           | 64,000           | 5.9%           | 9.4%          |

### Other benchmark results
```bash
name                   old ops/s    new ops/s    delta
# 50% read, 50% update
ycsb/A/nodes=3          16.0k ± 5%   16.2k ± 4%     ~     (p=0.353 n=10+10)
ycsb/A/nodes=3/cpu=32   28.7k ± 5%   33.8k ± 2%  +17.57%  (p=0.000 n=9+9)
# 95% read, 5% update
ycsb/B/nodes=3          29.9k ± 3%   30.2k ± 3%     ~     (p=0.278 n=9+10)
ycsb/B/nodes=3/cpu=32    101k ± 1%    100k ± 3%     ~     (p=0.274 n=8+10)
# 100% read
ycsb/C/nodes=3          40.4k ± 3%   40.0k ± 3%     ~     (p=0.190 n=10+10)
ycsb/C/nodes=3/cpu=32    135k ± 1%    137k ± 1%   +0.87%  (p=0.011 n=9+9)
# 95% read, 5% insert
ycsb/D/nodes=3          33.6k ± 3%   33.8k ± 3%     ~     (p=0.315 n=10+10)
ycsb/D/nodes=3/cpu=32    108k ± 1%    106k ± 6%     ~     (p=0.739 n=10+10)
# 95% scan, 5% insert
ycsb/E/nodes=3          3.79k ± 1%   3.73k ± 1%   -1.42%  (p=0.000 n=9+9)
ycsb/E/nodes=3/cpu=32   6.31k ± 5%   6.48k ± 6%     ~     (p=0.123 n=10+10)
# 50% read, 50% read-modify-write
ycsb/F/nodes=3          7.68k ± 2%   7.99k ± 2%   +4.11%  (p=0.000 n=10+10)
ycsb/F/nodes=3/cpu=32   15.6k ± 4%   18.1k ± 3%  +16.14%  (p=0.000 n=8+10)

name                   old avg(ms)  new avg(ms)  delta
ycsb/A/nodes=3           6.01 ± 5%    5.95 ± 4%     ~     (p=0.460 n=10+10)
ycsb/A/nodes=3/cpu=32    5.01 ± 4%    4.25 ± 4%  -15.19%  (p=0.000 n=9+10)
ycsb/B/nodes=3           4.80 ± 0%    4.77 ± 4%     ~     (p=0.586 n=7+10)
ycsb/B/nodes=3/cpu=32    1.90 ± 0%    1.90 ± 0%     ~     (all equal)
ycsb/C/nodes=3           3.56 ± 2%    3.61 ± 3%     ~     (p=0.180 n=10+10)
ycsb/C/nodes=3/cpu=32    1.40 ± 0%    1.40 ± 0%     ~     (all equal)
ycsb/D/nodes=3           2.87 ± 2%    2.85 ± 2%     ~     (p=0.650 n=10+10)
ycsb/D/nodes=3/cpu=32    1.30 ± 0%    1.34 ± 4%     ~     (p=0.087 n=10+10)
ycsb/E/nodes=3           25.3 ± 0%    25.7 ± 1%   +1.38%  (p=0.000 n=8+8)
ycsb/E/nodes=3/cpu=32    22.9 ± 5%    22.2 ± 6%     ~     (p=0.109 n=10+10)
ycsb/F/nodes=3           12.5 ± 2%    12.0 ± 1%   -3.72%  (p=0.000 n=10+9)
ycsb/F/nodes=3/cpu=32    9.27 ± 4%    7.98 ± 3%  -13.96%  (p=0.000 n=8+10)

name                   old p99(ms)  new p99(ms)  delta
ycsb/A/nodes=3           45.7 ±15%    35.7 ± 6%  -21.90%  (p=0.000 n=10+8)
ycsb/A/nodes=3/cpu=32    67.6 ±13%    55.3 ± 5%  -18.10%  (p=0.000 n=9+10)
ycsb/B/nodes=3           30.5 ±24%    29.4 ± 7%     ~     (p=0.589 n=10+10)
ycsb/B/nodes=3/cpu=32    12.8 ± 2%    13.3 ± 7%     ~     (p=0.052 n=10+8)
ycsb/C/nodes=3           14.0 ± 3%    14.2 ± 0%     ~     (p=0.294 n=10+8)
ycsb/C/nodes=3/cpu=32    5.80 ± 0%    5.70 ± 5%     ~     (p=0.233 n=7+10)
ycsb/D/nodes=3           12.4 ± 2%    11.7 ± 3%   -5.32%  (p=0.001 n=10+10)
ycsb/D/nodes=3/cpu=32    6.30 ± 0%    5.96 ± 6%   -5.40%  (p=0.001 n=10+10)
ycsb/E/nodes=3           81.0 ± 4%    83.9 ± 0%   +3.63%  (p=0.012 n=10+7)
ycsb/E/nodes=3/cpu=32     139 ±19%     119 ±12%  -14.46%  (p=0.021 n=10+10)
ycsb/F/nodes=3            122 ±17%     103 ±10%  -15.48%  (p=0.002 n=10+8)
ycsb/F/nodes=3/cpu=32     146 ±20%     133 ± 7%   -8.89%  (p=0.025 n=10+10)
```

The way to interpret these results is that async raft storage writes reduce latency and, as a result of the closed loop natured workload, also increase throughput for the YCSB variants that perform writes and aren't already CPU saturated. Variants that are read-only are unaffected. Variants that are CPU-saturated do not benefit from the change because they are already bottlenecked on CPU resources and cannot push any more load (see above).

----

Release note (performance improvement): The Raft proposal pipeline has been optimized to reduce interference between Raft proposals. This improves average and tail write latency at high concurrency.

96458: sql: fixes statement contention count metric r=j82w a=j82w

Fixes a bug introduced in #94750 where the metric
count was counting transaction that hit contention events instead of the statement count.

closes: #96429

Release note: none

Co-authored-by: Nathan VanBenschoten <[email protected]>
Co-authored-by: j82w <[email protected]>
@sumeerbhola
Copy link
Collaborator

Given state machine application very rarely syncs, we could have the state machine application happen in the same goroutine that is appending to the range's raft log. The benefit of unifying this scheduling is that if quorum is achieved with a lag of L log entries, state machine application will also only lag by L log entries relative the raft log append. @irfansharif and I have been discussing that this would simplify admission control tracking (since we want to minimize forecasting of the consequences of state machine application).

@nvanbenschoten
Copy link
Member Author

@irfansharif and I have been discussing that this would simplify admission control tracking (since we want to minimize forecasting of the consequences of state machine application).

How does this relate to the pacing of state machine application during recovery, when entries have already been committed by a quorum of replicas but a straggler replica is catching up using the log? Is the plan to pace log replication and state machine application together, or independently?

@irfansharif
Copy link
Contributor

We’d want to start off with just pacing log replication. To replicate already committed entries to the straggling replica, the leader+leaseholder replica would wait for flow tokens. Flow tokens would only be returned by the node being caught up once replicated entries have been admitted on the remote node. Admission of work on that node would take into account the apply time effect (using the same linear modelling we use today to go from the size of the log entries AC is informed of, to get to the L0 growth it actually observes).

BTW, the flow control discussions were mostly motivated by the recovery case where it’s likelier to build up a large amount of unapplied state.

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
A-kv-replication Relating to Raft, consensus, and coordination. C-performance Perf of queries or internals. Solution not expected to change functional behavior. T-kv KV Team
Projects
No open projects
Status: Incoming
Development

No branches or pull requests

3 participants