-
Notifications
You must be signed in to change notification settings - Fork 3.6k
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Initial commit of Python alignment portions.
- Loading branch information
Brandon Amos
committed
Sep 24, 2015
1 parent
4973245
commit df40fa2
Showing
8 changed files
with
468 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -5,3 +5,5 @@ data | |
|
||
models/facenet/*.t7 | ||
models/dlib/shape_predictor_68_face_landmarks.dat | ||
|
||
*.pyc |
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
from .naive_dlib import NaiveDlib |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
# Copyright 2015 Carnegie Mellon University | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import argparse | ||
import cv2 | ||
import dlib | ||
import numpy as np | ||
import os | ||
import random | ||
import sys | ||
|
||
from skimage import io | ||
|
||
from .. import helper | ||
from .. import data | ||
|
||
|
||
class NaiveDlib: | ||
def __init__(self, modelDir, facePredictorName): | ||
"""Initialize the dlib-based alignment.""" | ||
self.detector = dlib.get_frontal_face_detector() | ||
self.normMeanAlignPoints = loadMeanPoints(modelDir) | ||
self.predictor = dlib.shape_predictor(os.path.join(modelDir, | ||
facePredictorName)) | ||
|
||
def getAllFaceBoundingBoxes(self, img): | ||
return self.detector(img, 1) | ||
|
||
def getLargestFaceBoundingBox(self, img): | ||
faces = self.detector(img, 1) | ||
if len(faces) > 0: | ||
return max(faces, key=lambda rect: rect.width() * rect.height()) | ||
|
||
def align(self, img, bb): | ||
points = self.predictor(img, bb) | ||
return list(map(lambda p: (p.x, p.y), points.parts())) | ||
|
||
def alignImg(self, method, size, img, bb=None, | ||
outputPrefix=None, outputDebug=False, | ||
expandBox=False): | ||
if outputPrefix: | ||
helper.mkdirP(os.path.dirname(outputPrefix)) | ||
def getName(tag=None): | ||
if tag is None: | ||
return "{}.png".format(outputPrefix) | ||
else: | ||
return "{}-{}.png".format(outputPrefix, tag) | ||
|
||
if bb is None: | ||
try: | ||
bb = self.getLargestFaceBoundingBox(img) | ||
except Exception as e: | ||
print("Warning: {}".format(e)) | ||
# In rare cases, exceptions are thrown. | ||
return | ||
if bb is None: | ||
# Most failed detection attempts return here. | ||
return | ||
|
||
alignPoints = self.align(img, bb) | ||
meanAlignPoints = transformPoints(self.normMeanAlignPoints, bb, True) | ||
|
||
(xs, ys) = zip(*meanAlignPoints) | ||
tightBb = dlib.rectangle(left=min(xs), right=max(xs), | ||
top=min(ys), bottom=max(ys)) | ||
|
||
if method != 'tightcrop': | ||
npAlignPoints = np.float32(alignPoints) | ||
npMeanAlignPoints = np.float32(meanAlignPoints) | ||
|
||
if method == 'tightcrop': | ||
warpedImg = img | ||
elif method == 'affine': | ||
ss = np.array([39, 42, 57]) # Eyes and tip of nose. | ||
This comment has been minimized.
Sorry, something went wrong.
This comment has been minimized.
Sorry, something went wrong. |
||
npAlignPointsSS = npAlignPoints[ss] | ||
npMeanAlignPointsSS = npMeanAlignPoints[ss] | ||
H = cv2.getAffineTransform(npAlignPointsSS, npMeanAlignPointsSS) | ||
warpedImg = cv2.warpAffine(img, H, np.shape(img)[0:2]) | ||
elif method == 'perspective': | ||
ss = np.array([39,42,48,54]) # Eyes and corners of mouth. | ||
npAlignPointsSS = npAlignPoints[ss] | ||
npMeanAlignPointsSS = npMeanAlignPoints[ss] | ||
H = cv2.getPerspectiveTransform(npAlignPointsSS, npMeanAlignPointsSS) | ||
warpedImg = cv2.warpPerspective(img, H, np.shape(img)[0:2]) | ||
elif method == 'homography': | ||
(H,mask) = cv2.findHomography(npAlignPoints, npMeanAlignPoints, | ||
method=cv2.LMEDS) | ||
warpedImg = cv2.warpPerspective(img, H, np.shape(img)[0:2]) | ||
else: | ||
print("Error: method '{}' is unimplemented.".format(method)) | ||
sys.exit(-1) | ||
|
||
if method == 'tightcrop': | ||
wAlignPoints = alignPoints | ||
else: | ||
wBb = self.getLargestFaceBoundingBox(warpedImg) | ||
This comment has been minimized.
Sorry, something went wrong.
hbredin
|
||
if wBb is None: | ||
return | ||
wAlignPoints = self.align(warpedImg, wBb) | ||
wMeanAlignPoints = transformPoints(self.normMeanAlignPoints, wBb, True) | ||
|
||
if outputDebug: | ||
annotatedImg = annotate(img, bb, alignPoints, meanAlignPoints) | ||
io.imsave(getName("orig"), img) | ||
io.imsave(getName("annotated"), annotatedImg) | ||
|
||
if args.method != 'tightcrop': | ||
wAnnotatedImg = annotate(warpedImg, wBb, | ||
wAlignPoints, wMeanAlignPoints) | ||
io.imsave(getName("warped"), warpedImg) | ||
io.imsave(getName("warped-annotated"), wAnnotatedImg) | ||
|
||
if len(warpedImg.shape) != 3: | ||
print(" + Warning: Result does not have 3 dimensions.") | ||
return None | ||
|
||
(xs, ys) = zip(*wAlignPoints) | ||
xRange = max(xs)-min(xs) | ||
yRange = max(ys)-min(ys) | ||
if expandBox: | ||
(l, r, t, b) = (min(xs)-0.20*xRange, max(xs)+0.20*xRange, | ||
min(ys)-0.65*yRange, max(ys)+0.20*yRange) | ||
else: | ||
(l, r, t, b) = (min(xs), max(xs), min(ys), max(ys)) | ||
(w, h, _) = warpedImg.shape | ||
if 0 <= l <= w and 0 <= r <= w and 0 <= b <= h and 0 <= t <= h: | ||
cwImg = cv2.resize(warpedImg[t:b, l:r], (size, size)) | ||
h, edges= np.histogram(cwImg.ravel(), 16, [0,256]) | ||
s = sum(h) | ||
if any(h > 0.65*s): | ||
print("Warning: Image is likely a single color.") | ||
return | ||
else: | ||
print("Warning: Unable to align and crop to the " | ||
"face's bounding box.") | ||
return | ||
|
||
if outputPrefix: | ||
io.imsave(getName(), cwImg) | ||
return cwImg | ||
|
||
def transformPoints(points, bb, toImgCoords): | ||
if toImgCoords: | ||
def scale(p): | ||
(x,y) = p | ||
return ( int((x*bb.width())+bb.left()), | ||
int((y*bb.height())+bb.top()) ) | ||
else: | ||
def scale(p): | ||
(x,y) = p | ||
return ( float(x-bb.left())/bb.width(), | ||
float(y-bb.top())/bb.height() ) | ||
return list(map(scale, points)) | ||
|
||
|
||
def loadMeanPoints(modelDir): | ||
def parse(line): | ||
(x,y) = line.strip().split(",") | ||
return (float(x), float(y)) | ||
with open("{}/mean.csv".format(modelDir),'r') as f: | ||
return [parse(line) for line in f] | ||
|
||
def annotate(img, box, points=None, meanPoints=None): | ||
a = np.copy(img) | ||
bl = (box.left(), box.bottom()) | ||
tr = (box.right(), box.top()) | ||
cv2.rectangle(a, bl, tr, color=(153, 255, 204), thickness=3) | ||
for p in points: | ||
cv2.circle(a, center=p, radius=3, color=(102, 204, 255), thickness=-1) | ||
for p in meanPoints: | ||
cv2.circle(a, center=p, radius=3, color=(0,0,0), thickness=-1) | ||
return a |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
# Copyright 2015 Carnegie Mellon University | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import os | ||
|
||
from skimage import io | ||
|
||
class Image: | ||
def __init__(self, cls, name, path): | ||
self.cls = cls | ||
self.name = name | ||
self.path = path | ||
self.rgb = None | ||
|
||
def getRGB(self, cache=False): | ||
if self.rgb is not None: | ||
return self.rgb | ||
else: | ||
try: | ||
rgb = io.imread(self.path) | ||
except: | ||
rgb = None | ||
if cache: | ||
self.rgb = rgb | ||
return rgb | ||
|
||
def __repr__(self): | ||
return "({}, {})".format(self.cls, self.name) | ||
|
||
|
||
def iterImgs(d): | ||
exts = [".jpg", ".png"] | ||
|
||
for subdir, dirs, files in os.walk(d): | ||
for path in files: | ||
(imageClass, fName) = (os.path.basename(subdir), path) | ||
(imageName, ext) = os.path.splitext(fName) | ||
if ext in exts: | ||
yield Image(imageClass, imageName, os.path.join(subdir, fName)) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,10 @@ | ||
import errno | ||
import os | ||
|
||
def mkdirP(path): | ||
try: | ||
os.makedirs(path) | ||
except OSError as exc: # Python >2.5 | ||
if exc.errno == errno.EEXIST and os.path.isdir(path): | ||
pass | ||
else: raise |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,144 @@ | ||
#!/usr/bin/env python2 | ||
# | ||
# Copyright 2015 Carnegie Mellon University | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
|
||
import sys | ||
sys.path.append(".") | ||
|
||
import argparse | ||
import cv2 | ||
import os | ||
import random | ||
import shutil | ||
|
||
from skimage import io | ||
|
||
def write(vals, fName): | ||
if os.path.isfile(fName): | ||
print("{} exists. Backing up.".format(fName)) | ||
os.rename(fName, "{}.bak".format(fName)) | ||
with open(fName, 'w') as f: | ||
for p in vals: | ||
f.write(",".join(str(x) for x in p)) | ||
f.write("\n") | ||
|
||
def computeMeanMain(args): | ||
dlibAlign = NaiveDlib(args.facePredictorPath) | ||
|
||
imgs = list(iterImgs(args.inputDir)) | ||
if args.numImages > 0: | ||
imgs = random.sample(imgs, args.numImages) | ||
|
||
facePoints = [] | ||
for img in imgs: | ||
rgb = img.getRGB() | ||
bb = dlibAlign.getLargestFaceBoundingBox(rgb) | ||
alignedPoints = dlibAlign.align(rgb, bb) | ||
if alignedPoints: | ||
facePoints.append(alignedPoints) | ||
|
||
facePointsNp = np.array(facePoints) | ||
mean = np.mean(facePointsNp, axis=0) | ||
std = np.std(facePointsNp, axis=0) | ||
|
||
write(mean, "{}/mean.csv".format(args.modelDir)) | ||
write(std, "{}/std.csv".format(args.modelDir)) | ||
|
||
# Only import in this mode. | ||
import matplotlib as mpl | ||
mpl.use('Agg') | ||
import matplotlib.pyplot as plt | ||
|
||
fig, ax = plt.subplots() | ||
ax.scatter(mean[:,0], -mean[:,1], color='k') | ||
ax.axis('equal') | ||
for i,p in enumerate(mean): | ||
ax.annotate(str(i), (p[0]+0.005, -p[1]+0.005), fontsize=8) | ||
plt.savefig("{}/mean.png".format(args.modelDir)) | ||
|
||
|
||
def alignMain(args): | ||
facenet.helper.mkdirP(args.outputDir) | ||
|
||
imgs = list(iterImgs(args.inputDir)) | ||
|
||
# Shuffle so multiple versions can be run at once. | ||
random.shuffle(imgs) | ||
|
||
dlibAlign = facenet.alignment.NaiveDlib(args.modelDir, | ||
args.facePredictorName) | ||
|
||
nFallbacks = 0 | ||
for imgObject in imgs: | ||
outDir = os.path.join(args.outputDir, imgObject.cls) | ||
imgName = "{}/{}.png".format(outDir, imgObject.name) | ||
facenet.helper.mkdirP(outDir) | ||
if not os.path.isfile(imgName): | ||
rgb = imgObject.getRGB(cache=False) | ||
out = dlibAlign.alignImg(args.method, args.size, rgb) | ||
if args.fallbackLfw and out is None: | ||
nFallbacks += 1 | ||
deepFunneled = "{}/{}.jpg".format(os.path.join(args.fallbackLfw, | ||
imgObject.cls), | ||
imgObject.name) | ||
shutil.copy(deepFunneled, "{}/{}.jpg".format(os.path.join(args.outputDir, | ||
imgObject.cls), | ||
imgObject.name)) | ||
|
||
if out is not None: | ||
io.imsave(imgName, out) | ||
print('nFallbacks:', nFallbacks) | ||
|
||
if __name__=='__main__': | ||
parser = argparse.ArgumentParser() | ||
|
||
parser.add_argument('inputDir', type=str, help="Input image directory.") | ||
parser.add_argument('--modelDir', type=str, help="Directory of dlib's predictor and mean image models.", | ||
default="./models/dlib/") | ||
parser.add_argument('--facePredictorName', type=str, help="Name of the face predictor.", | ||
default="shape_predictor_68_face_landmarks.dat") | ||
parser.add_argument('--dlibRoot', type=str, | ||
default="/home/bamos/src/dlib-18.15/python_examples", | ||
help="dlib directory with the dlib.so Python library.") | ||
|
||
subparsers = parser.add_subparsers(dest='mode', help="Mode") | ||
computeMeanParser = subparsers.add_parser('computeMean', help='Compute the image mean of a directory of images.') | ||
computeMeanParser.add_argument('--numImages', type=int, help="The number of images. '0' for all images.", | ||
default=0) # <= 0 ===> all imgs | ||
alignmentParser = subparsers.add_parser('align', help='Align a directory of images.') | ||
alignmentParser.add_argument('method', type=str, | ||
choices=['tightcrop', 'affine', | ||
'perspective', 'homography'], | ||
help="Alignment method.") | ||
alignmentParser.add_argument('outputDir', type=str, help="Output directory of aligned images.") | ||
alignmentParser.add_argument('--outputDebugImages', action='store_true', | ||
help='Output annotated images for debugging and presenting.') | ||
alignmentParser.add_argument('--size', type=int, help="Default image size.", | ||
default=152) | ||
alignmentParser.add_argument('--fallbackLfw', type=str, | ||
help="If alignment doesn't work, fallback to copying the deep funneled version from this directory..") | ||
|
||
args = parser.parse_args() | ||
|
||
sys.path.append(args.dlibRoot) | ||
import facenet | ||
import facenet.helper | ||
from facenet.data import iterImgs | ||
from facenet.alignment import NaiveDlib | ||
|
||
if args.mode == 'computeMean': | ||
computeMeanMain(args) | ||
else: | ||
alignMain(args) |
Oops, something went wrong.
tip of nose?