Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: switch to DDXv2 as baseline #31618

Merged
merged 5 commits into from
Oct 12, 2020
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
52 changes: 37 additions & 15 deletions PhysicsTools/NanoAOD/python/jets_cff.py
Original file line number Diff line number Diff line change
Expand Up @@ -227,12 +227,14 @@
electronIdx1 = Var("?overlaps('electrons').size()>0?overlaps('electrons')[0].key():-1", int, doc="index of first matching electron"),
electronIdx2 = Var("?overlaps('electrons').size()>1?overlaps('electrons')[1].key():-1", int, doc="index of second matching electron"),
nElectrons = Var("?hasOverlaps('electrons')?overlaps('electrons').size():0", int, doc="number of electrons in the jet"),
btagCMVA = Var("bDiscriminator('pfCombinedMVAV2BJetTags')",float,doc="CMVA V2 btag discriminator",precision=10),
btagDeepB = Var("bDiscriminator('pfDeepCSVJetTags:probb')+bDiscriminator('pfDeepCSVJetTags:probbb')",float,doc="DeepCSV b+bb tag discriminator",precision=10),
btagDeepFlavB = Var("bDiscriminator('pfDeepFlavourJetTags:probb')+bDiscriminator('pfDeepFlavourJetTags:probbb')+bDiscriminator('pfDeepFlavourJetTags:problepb')",float,doc="DeepFlavour b+bb+lepb tag discriminator",precision=10),
btagDeepB = Var("?(bDiscriminator('pfDeepCSVJetTags:probb')+bDiscriminator('pfDeepCSVJetTags:probbb'))>=0?bDiscriminator('pfDeepCSVJetTags:probb')+bDiscriminator('pfDeepCSVJetTags:probbb'):-1",float,doc="DeepCSV b+bb tag discriminator",precision=10),
btagDeepFlavB = Var("bDiscriminator('pfDeepFlavourJetTags:probb')+bDiscriminator('pfDeepFlavourJetTags:probbb')+bDiscriminator('pfDeepFlavourJetTags:problepb')",float,doc="DeepJet b+bb+lepb tag discriminator",precision=10),
btagCSVV2 = Var("bDiscriminator('pfCombinedInclusiveSecondaryVertexV2BJetTags')",float,doc=" pfCombinedInclusiveSecondaryVertexV2 b-tag discriminator (aka CSVV2)",precision=10),
btagDeepC = Var("bDiscriminator('pfDeepCSVJetTags:probc')",float,doc="DeepCSV charm btag discriminator",precision=10),
btagDeepFlavC = Var("bDiscriminator('pfDeepFlavourJetTags:probc')",float,doc="DeepFlavour charm tag discriminator",precision=10),
btagDeepCvL = Var("?bDiscriminator('pfDeepCSVJetTags:probc')>=0?bDiscriminator('pfDeepCSVJetTags:probc')/(bDiscriminator('pfDeepCSVJetTags:probc')+bDiscriminator('pfDeepCSVJetTags:probudsg')):-1", float,doc="DeepCSV c vs udsg discriminator",precision=10),
btagDeepCvB = Var("?bDiscriminator('pfDeepCSVJetTags:probc')>=0?bDiscriminator('pfDeepCSVJetTags:probc')/(bDiscriminator('pfDeepCSVJetTags:probc')+bDiscriminator('pfDeepCSVJetTags:probb')+bDiscriminator('pfDeepCSVJetTags:probbb')):-1",float,doc="DeepCSV c vs b+bb discriminator",precision=10),
btagDeepFlavCvL = Var("?(bDiscriminator('pfDeepFlavourJetTags:probc')+bDiscriminator('pfDeepFlavourJetTags:probuds')+bDiscriminator('pfDeepFlavourJetTags:probg'))>0?bDiscriminator('pfDeepFlavourJetTags:probc')/(bDiscriminator('pfDeepFlavourJetTags:probc')+bDiscriminator('pfDeepFlavourJetTags:probuds')+bDiscriminator('pfDeepFlavourJetTags:probg')):-1",float,doc="DeepJet c vs uds+g discriminator",precision=10),
btagDeepFlavCvB = Var("?(bDiscriminator('pfDeepFlavourJetTags:probc')+bDiscriminator('pfDeepFlavourJetTags:probb')+bDiscriminator('pfDeepFlavourJetTags:probbb')+bDiscriminator('pfDeepFlavourJetTags:problepb'))>0?bDiscriminator('pfDeepFlavourJetTags:probc')/(bDiscriminator('pfDeepFlavourJetTags:probc')+bDiscriminator('pfDeepFlavourJetTags:probb')+bDiscriminator('pfDeepFlavourJetTags:probbb')+bDiscriminator('pfDeepFlavourJetTags:problepb')):-1",float,doc="DeepJet c vs b+bb+lepb discriminator",precision=10),
btagDeepFlavQG = Var("?(bDiscriminator('pfDeepFlavourJetTags:probg')+bDiscriminator('pfDeepFlavourJetTags:probuds'))>0?bDiscriminator('pfDeepFlavourJetTags:probg')/(bDiscriminator('pfDeepFlavourJetTags:probg')+bDiscriminator('pfDeepFlavourJetTags:probuds')):-1",float,doc="DeepJet g vs uds discriminator",precision=10),
puIdDisc = Var("userFloat('puId102XDisc')",float,doc="Pilup ID discriminant with 102X (2018) training",precision=10),
puId = Var("userInt('pileupJetId:fullId')",int,doc="Pilup ID flags with 80X (2016) training"),
jetId = Var("userInt('tightId')*2+4*userInt('tightIdLepVeto')",int,doc="Jet ID flags bit1 is loose (always false in 2017 since it does not exist), bit2 is tight, bit3 is tightLepVeto"),
Expand All @@ -259,6 +261,13 @@
jetTable.variables.pt.precision=10

### Era dependent customization
for modifier in run2_miniAOD_80XLegacy, run2_nanoAOD_94X2016, run2_nanoAOD_94XMiniAODv1, run2_nanoAOD_94XMiniAODv2, run2_nanoAOD_102Xv1, run2_nanoAOD_106Xv1:
# Deprecated after 106X
modifier.toModify(jetTable.variables,
btagCMVA = Var("bDiscriminator('pfCombinedMVAV2BJetTags')",float,doc="CMVA V2 btag discriminator",precision=10),
btagDeepC = Var("bDiscriminator('pfDeepCSVJetTags:probc')",float,doc="DeepCSV charm btag discriminator",precision=10),
btagDeepFlavC = Var("bDiscriminator('pfDeepFlavourJetTags:probc')",float,doc="DeepFlavour charm tag discriminator",precision=10),
)
for modifier in run2_miniAOD_80XLegacy, run2_nanoAOD_94X2016:
modifier.toModify( jetTable.variables, jetId = Var("userInt('tightIdLepVeto')*4+userInt('tightId')*2+userInt('looseId')",int,doc="Jet ID flags bit1 is loose, bit2 is tight, bit3 is tightLepVeto"))
run2_jme_2016.toModify( jetTable.variables, puIdDisc = Var("userFloat('pileupJetId:fullDiscriminant')",float,doc="Pilup ID discriminant with 80X (2016) training",precision=10))
Expand Down Expand Up @@ -422,16 +431,12 @@
n2b1 = Var("?hasUserFloat('nb1AK8PuppiSoftDrop:ecfN2')?userFloat('nb1AK8PuppiSoftDrop:ecfN2'):-99999.", float, doc="N2 with beta=1 (for jets with raw pT>250 GeV)", precision=10),
n3b1 = Var("?hasUserFloat('nb1AK8PuppiSoftDrop:ecfN3')?userFloat('nb1AK8PuppiSoftDrop:ecfN3'):-99999.", float, doc="N3 with beta=1 (for jets with raw pT>250 GeV)", precision=10),
msoftdrop = Var("groomedMass('SoftDropPuppi')",float, doc="Corrected soft drop mass with PUPPI",precision=10),
btagCMVA = Var("bDiscriminator('pfCombinedMVAV2BJetTags')",float,doc="CMVA V2 btag discriminator",precision=10),
btagDeepB = Var("bDiscriminator('pfDeepCSVJetTags:probb')+bDiscriminator('pfDeepCSVJetTags:probbb')",float,doc="DeepCSV b+bb tag discriminator",precision=10),
btagDeepB = Var("?(bDiscriminator('pfDeepCSVJetTags:probb')+bDiscriminator('pfDeepCSVJetTags:probbb'))>=0?bDiscriminator('pfDeepCSVJetTags:probb')+bDiscriminator('pfDeepCSVJetTags:probbb'):-1",float,doc="DeepCSV b+bb tag discriminator",precision=10),
btagCSVV2 = Var("bDiscriminator('pfCombinedInclusiveSecondaryVertexV2BJetTags')",float,doc=" pfCombinedInclusiveSecondaryVertexV2 b-tag discriminator (aka CSVV2)",precision=10),
btagHbb = Var("bDiscriminator('pfBoostedDoubleSecondaryVertexAK8BJetTags')",float,doc="Higgs to BB tagger discriminator",precision=10),
btagDDBvL_noMD = Var("bDiscriminator('pfDeepDoubleBvLJetTags:probHbb')",float,doc="DeepDoubleX discriminator (no mass-decorrelation) for H(Z)->bb vs QCD",precision=10),
btagDDCvL_noMD = Var("bDiscriminator('pfDeepDoubleCvLJetTags:probHcc')",float,doc="DeepDoubleX discriminator (no mass-decorrelation) for H(Z)->cc vs QCD",precision=10),
btagDDCvB_noMD = Var("bDiscriminator('pfDeepDoubleCvBJetTags:probHcc')",float,doc="DeepDoubleX discriminator (no mass-decorrelation) for H(Z)->cc vs H(Z)->bb",precision=10),
btagDDBvL = Var("bDiscriminator('pfMassIndependentDeepDoubleBvLJetTags:probHbb')",float,doc="DeepDoubleX (mass-decorrelated) discriminator for H(Z)->bb vs QCD",precision=10),
btagDDCvL = Var("bDiscriminator('pfMassIndependentDeepDoubleCvLJetTags:probHcc')",float,doc="DeepDoubleX (mass-decorrelated) discriminator for H(Z)->cc vs QCD",precision=10),
btagDDCvB = Var("bDiscriminator('pfMassIndependentDeepDoubleCvBJetTags:probHcc')",float,doc="DeepDoubleX (mass-decorrelated) discriminator for H(Z)->cc vs H(Z)->bb",precision=10),
btagDDBvLV2 = Var("bDiscriminator('pfMassIndependentDeepDoubleBvLV2JetTags:probHbb')",float,doc="DeepDoubleX V2(mass-decorrelated) discriminator for H(Z)->bb vs QCD",precision=10),
btagDDCvLV2 = Var("bDiscriminator('pfMassIndependentDeepDoubleCvLV2JetTags:probHcc')",float,doc="DeepDoubleX V2 (mass-decorrelated) discriminator for H(Z)->cc vs QCD",precision=10),
btagDDCvBV2 = Var("bDiscriminator('pfMassIndependentDeepDoubleCvBV2JetTags:probHcc')",float,doc="DeepDoubleX V2 (mass-decorrelated) discriminator for H(Z)->cc vs H(Z)->bb",precision=10),
Comment on lines +437 to +439
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

So the nano step need to run also on the already made miniAOD
The V2 will appear only on master and you need to modify the jetTable for the old mini
see some example from jme few lines below.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

you can verify if runs with
runTheMatrix.py -l 136.8522
(JetHT of typenanoAOD_106Xv1 )

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

A better option would be to have for both nanoAOD_106Xv1 and master the V2 version.
since both of them will get the same scale factor since have as input the UL RECO.
The only difference is that in the nanoAOD_106Xv1 you need to rerun the tagger and in master need to take from the miniAOD directly.

For the EOY we need to keep the V1.

deepTag_TvsQCD = Var("bDiscriminator('pfDeepBoostedDiscriminatorsJetTags:TvsQCD')",float,doc="DeepBoostedJet tagger top vs QCD discriminator",precision=10),
deepTag_WvsQCD = Var("bDiscriminator('pfDeepBoostedDiscriminatorsJetTags:WvsQCD')",float,doc="DeepBoostedJet tagger W vs QCD discriminator",precision=10),
deepTag_ZvsQCD = Var("bDiscriminator('pfDeepBoostedDiscriminatorsJetTags:ZvsQCD')",float,doc="DeepBoostedJet tagger Z vs QCD discriminator",precision=10),
Expand Down Expand Up @@ -476,9 +481,19 @@
)
)
### Era dependent customization
for modifier in run2_nanoAOD_94X2016, run2_nanoAOD_94XMiniAODv1, run2_nanoAOD_94XMiniAODv2, run2_nanoAOD_102Xv1, run2_nanoAOD_106Xv1:
for modifier in run2_miniAOD_80XLegacy, run2_nanoAOD_94X2016, run2_nanoAOD_94XMiniAODv1, run2_nanoAOD_94XMiniAODv2, run2_nanoAOD_102Xv1, run2_nanoAOD_106Xv1:
modifier.toModify( fatJetTable.variables.n2b1, expr = cms.string("userFloat('ak8PFJetsPuppiSoftDropValueMap:nb1AK8PuppiSoftDropN2')"),)
modifier.toModify( fatJetTable.variables.n3b1, expr = cms.string("userFloat('ak8PFJetsPuppiSoftDropValueMap:nb1AK8PuppiSoftDropN3')"),)
# Deprecated after 106X
modifier.toModify( fatJetTable.variables,
btagCMVA = Var("bDiscriminator('pfCombinedMVAV2BJetTags')",float,doc="CMVA V2 btag discriminator",precision=10),
btagDDBvL_noMD = Var("bDiscriminator('pfDeepDoubleBvLJetTags:probHbb')",float,doc="DeepDoubleX discriminator (no mass-decorrelation) for H(Z)->bb vs QCD",precision=10),
btagDDCvL_noMD = Var("bDiscriminator('pfDeepDoubleCvLJetTags:probHcc')",float,doc="DeepDoubleX discriminator (no mass-decorrelation) for H(Z)->cc vs QCD",precision=10),
btagDDCvB_noMD = Var("bDiscriminator('pfDeepDoubleCvBJetTags:probHcc')",float,doc="DeepDoubleX discriminator (no mass-decorrelation) for H(Z)->cc vs H(Z)->bb",precision=10),
btagDDBvL = Var("bDiscriminator('pfMassIndependentDeepDoubleBvLJetTags:probHbb')",float,doc="DeepDoubleX (mass-decorrelated) discriminator for H(Z)->bb vs QCD",precision=10),
btagDDCvL = Var("bDiscriminator('pfMassIndependentDeepDoubleCvLJetTags:probHcc')",float,doc="DeepDoubleX (mass-decorrelated) discriminator for H(Z)->cc vs QCD",precision=10),
btagDDCvB = Var("bDiscriminator('pfMassIndependentDeepDoubleCvBJetTags:probHcc')",float,doc="DeepDoubleX (mass-decorrelated) discriminator for H(Z)->cc vs H(Z)->bb",precision=10),
Comment on lines +490 to +495
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

currently for those run2_nanoAOD_106Xv1 (Summer19 UL) both V1 and V2 are stored, are the SF being provided for both ?
suggest to add:
for modifier in run2_nanoAOD_94X2016, run2_nanoAOD_94XMiniAODv1, run2_nanoAOD_94XMiniAODv2, run2_nanoAOD_102Xv1:

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Yes, we'll calculate both anyway for comparison in run2_nanoAOD_106Xv1.

I am not sure I understand, the suggestion here is to drop run2_nanoAOD_106Xv1 from the list of modifiers that will still produce V1? But the previous suggestions was the both should be available in 106? Did I misunderstand?

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ok, since you calculate both SF, we can keep both the V1 and V2 for the run2_nanoAOD_106Xv1.

in this way we have both for EOY and UL 106Xv1 while only V2 for the future (reMiniAOD and following).

)
run2_miniAOD_80XLegacy.toModify( fatJetTable.variables, msoftdrop_chs = Var("userFloat('ak8PFJetsCHSSoftDropMass')",float, doc="Legacy uncorrected soft drop mass with CHS",precision=10))
run2_miniAOD_80XLegacy.toModify( fatJetTable.variables.tau1, expr = cms.string("userFloat(\'ak8PFJetsPuppiValueMap:NjettinessAK8PuppiTau1\')"),)
run2_miniAOD_80XLegacy.toModify( fatJetTable.variables.tau2, expr = cms.string("userFloat(\'ak8PFJetsPuppiValueMap:NjettinessAK8PuppiTau2\')"),)
Expand Down Expand Up @@ -511,7 +526,6 @@
singleton = cms.bool(False), # the number of entries is variable
extension = cms.bool(False), # this is the main table for the jets
variables = cms.PSet(P4Vars,
btagCMVA = Var("bDiscriminator('pfCombinedMVAV2BJetTags')",float,doc="CMVA V2 btag discriminator",precision=10),
btagDeepB = Var("bDiscriminator('pfDeepCSVJetTags:probb')+bDiscriminator('pfDeepCSVJetTags:probbb')",float,doc="DeepCSV b+bb tag discriminator",precision=10),
btagCSVV2 = Var("bDiscriminator('pfCombinedInclusiveSecondaryVertexV2BJetTags')",float,doc=" pfCombinedInclusiveSecondaryVertexV2 b-tag discriminator (aka CSVV2)",precision=10),
rawFactor = Var("1.-jecFactor('Uncorrected')",float,doc="1 - Factor to get back to raw pT",precision=6),
Expand All @@ -524,6 +538,13 @@
)
)

# Deprecation/backcomp
for modifier in run2_miniAOD_80XLegacy, run2_nanoAOD_94X2016, run2_nanoAOD_94XMiniAODv1, run2_nanoAOD_94XMiniAODv2, run2_nanoAOD_102Xv1, run2_nanoAOD_106Xv1:
# post 106X
modifier.toModify(subJetTable.variables,
Comment on lines +542 to +544
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Suggested change
for modifier in run2_miniAOD_80XLegacy, run2_nanoAOD_94X2016, run2_nanoAOD_94XMiniAODv1, run2_nanoAOD_94XMiniAODv2, run2_nanoAOD_102Xv1, run2_nanoAOD_106Xv1:
# post 106X
modifier.toModify(subJetTable.variables,
# post 106X
_modifier = (run2_miniAOD_80XLegacy | run2_nanoAOD_94X2016 | run2_nanoAOD_94XMiniAODv1 |
run2_nanoAOD_94XMiniAODv2 | run2_nanoAOD_102Xv1 | run2_nanoAOD_106Xv1)
_modifier.toModify(subJetTable.variables,

may be a bit more readable

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@slava77 let me re-ask the question from above, is there a way to fetch these "by age". For this kind of deprecation it would be very neat to have logic like

for modifier in modifiers_older_then[deprecated_here]:
   do old stuff that we don't do anymore

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

@slava77 let me re-ask the question from above, is there a way to fetch these "by age".

I don't clearly see how this can be encoded at the level of top-level modifier.
One solution could be to refactor these top-level modifiers to smaller pieces, like nano_rerun_blah of different kinds and then chain them into a given run2_nanoAOD_XYZ

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

ok, cheers

btagCMVA = Var("bDiscriminator('pfCombinedMVAV2BJetTags')",float,doc="CMVA V2 btag discriminator",precision=10),
)

#jets are not as precise as muons
fatJetTable.variables.pt.precision=10
subJetTable.variables.pt.precision=10
Expand Down Expand Up @@ -666,6 +687,7 @@
variables = cms.PSet(
nBHadrons = Var("jetFlavourInfo().getbHadrons().size()", "uint8", doc="number of b-hadrons"),
nCHadrons = Var("jetFlavourInfo().getcHadrons().size()", "uint8", doc="number of c-hadrons"),
hadronFlavour = Var("hadronFlavour()", int, doc="flavour from hadron ghost clustering"),
)
)

Expand Down
9 changes: 9 additions & 0 deletions PhysicsTools/NanoAOD/python/nanoDQM_cfi.py
Original file line number Diff line number Diff line change
Expand Up @@ -124,10 +124,13 @@
Plot1D('btagCMVA', 'btagCMVA', 20, -1, 1, 'CMVA V2 btag discriminator'),
Plot1D('btagCSVV2', 'btagCSVV2', 20, -1, 1, ' pfCombinedInclusiveSecondaryVertexV2 b-tag discriminator (aka CSVV2)'),
Plot1D('btagDDBvL', 'btagDDBvL', 20, -1, 1, 'DeepDoubleX (mass-decorrelated) discriminator for H(Z)->bb vs QCD'),
Plot1D('btagDDBvLV2', 'btagDDBvLV2', 20, 0, 1, 'DeepDoubleX V2(mass-decorrelated) discriminator for H(Z)->bb vs QCD'),
Plot1D('btagDDBvL_noMD', 'btagDDBvL_noMD', 20, 0, 1, 'DeepDoubleX discriminator (no mass-decorrelation) for H(Z)->bb vs QCD'),
Plot1D('btagDDCvB', 'btagDDCvB', 20, -1, 1, 'DeepDoubleX (mass-decorrelated) discriminator for H(Z)->cc vs H(Z)->bb'),
Plot1D('btagDDCvBV2', 'btagDDCvBV2', 20, 0, 1, 'DeepDoubleX V2 (mass-decorrelated) discriminator for H(Z)->cc vs H(Z)->bb'),
Plot1D('btagDDCvB_noMD', 'btagDDCvB_noMD', 20, 0, 1, 'DeepDoubleX discriminator (no mass-decorrelation) for H(Z)->cc vs H(Z)->bb'),
Plot1D('btagDDCvL', 'btagDDCvL', 20, -1, 1, 'DeepDoubleX (mass-decorrelated) discriminator for H(Z)->cc vs QCD'),
Plot1D('btagDDCvLV2', 'btagDDCvLV2', 20, 0, 1, 'DeepDoubleX V2 (mass-decorrelated) discriminator for H(Z)->cc vs QCD'),
Plot1D('btagDDCvL_noMD', 'btagDDCvL_noMD', 20, 0, 1, 'DeepDoubleX discriminator (no mass-decorrelation) for H(Z)->cc vs QCD'),
Plot1D('btagDeepB', 'btagDeepB', 20, -1, 1, 'Deep B+BB btag discriminator'),
Plot1D('btagHbb', 'btagHbb', 20, -1, 1, 'Higgs to BB tagger discriminator'),
Expand Down Expand Up @@ -342,8 +345,13 @@
Plot1D('btagCSVV2', 'btagCSVV2', 20, -1, 1, ' pfCombinedInclusiveSecondaryVertexV2 b-tag discriminator (aka CSVV2)'),
Plot1D('btagDeepB', 'btagDeepB', 20, -1, 1, 'Deep B+BB btag discriminator'),
Plot1D('btagDeepC', 'btagDeepC', 20, 0, 1, 'DeepCSV charm btag discriminator'),
Plot1D('btagDeepCvB', 'btagDeepCvB', 20, -1, 1, 'DeepCSV c vs b+bb discriminator'),
Plot1D('btagDeepCvL', 'btagDeepCvL', 20, -1, 1, 'DeepCSV c vs udsg discriminator'),
Plot1D('btagDeepFlavB', 'btagDeepFlavB', 20, 0, 1, 'DeepFlavour b+bb tag discriminator'),
Plot1D('btagDeepFlavC', 'btagDeepFlavC', 20, 0, 1, 'DeepFlavour charm tag discriminator'),
Plot1D('btagDeepFlavCvB', 'btagDeepFlavCvB', 20, -1, 1, 'DeepJet c vs b+bb+lepb discriminator'),
Plot1D('btagDeepFlavCvL', 'btagDeepFlavCvL', 20, -1, 1, 'DeepJet c vs uds+g discriminator'),
Plot1D('btagDeepFlavQG', 'btagDeepFlavQG', 20, -1, 1, 'DeepJet g vs uds discriminator'),
Plot1D('cRegCorr', 'cRegCorr', 20, 0.6, 2, 'pt correction for c-jet energy regression'),
Plot1D('cRegRes', 'cRegRes', 20, 0.05, 0.4, 'res on pt corrected with c-jet regression'),
Plot1D('chEmEF', 'chEmEF', 20, 0, 1, 'charged Electromagnetic Energy Fraction'),
Expand Down Expand Up @@ -608,6 +616,7 @@
Plot1D('btagCSVV2', 'btagCSVV2', 20, -1, 1, ' pfCombinedInclusiveSecondaryVertexV2 b-tag discriminator (aka CSVV2)'),
Plot1D('btagDeepB', 'btagDeepB', 20, -1, 1, 'Deep B+BB btag discriminator'),
Plot1D('eta', 'eta', 20, -4, 4, 'eta'),
Plot1D('hadronFlavour', 'hadronFlavour', 6, -0.5, 5.5, 'flavour from hadron ghost clustering'),
Plot1D('mass', 'mass', 20, -200, 200, 'mass'),
Plot1D('n2b1', 'n2b1', 20, 0, 1, 'N2 (beta=1)'),
Plot1D('n3b1', 'n3b1', 20, 0, 5, 'N3 (beta=1)'),
Expand Down
Loading