Skip to content

Commit

Permalink
Full workflow from raw data to pixel tracks and vertices on GPUs (#216)
Browse files Browse the repository at this point in the history
Port and optimise the full workflow from pixel raw data to pixel tracks and vertices to GPUs.
Clean the pixel n-tuplets with the "fishbone" algorithm (only on GPUs).

Other changes:
  - recover the Riemann fit updates lost during the merge with CMSSW 10.4.x;
  - speed up clustering and track fitting;
  - minor bug fix to avoid trivial regression with the optimized fit.
  • Loading branch information
fwyzard committed Nov 27, 2020
1 parent f37b949 commit 2a28f93
Show file tree
Hide file tree
Showing 27 changed files with 2,446 additions and 1,234 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@ def customizePixelTracksForProfiling(process):
process.out = cms.OutputModule("AsciiOutputModule",
outputCommands = cms.untracked.vstring(
"keep *_pixelTracks_*_*",
"keep *_pixelVertices_*_*",
),
verbosity = cms.untracked.uint32(0),
)
Expand All @@ -19,17 +20,12 @@ def customizePixelTracksForProfiling(process):
def customizePixelTracksForProfilingDisableConversion(process):
process = customizePixelTracksForProfiling(process)

# Turn off cluster shape filter so that CA doesn't depend on clusters
process.pixelTracksHitQuadruplets.SeedComparitorPSet = cms.PSet(ComponentName = cms.string("none"))

# Replace pixel track producer with a dummy one for now
from RecoPixelVertexing.PixelTrackFitting.pixelTrackProducerFromCUDA_cfi import pixelTrackProducerFromCUDA as _pixelTrackProducerFromCUDA
process.pixelTracks = _pixelTrackProducerFromCUDA.clone()

# Disable conversions to legacy
process.siPixelClustersPreSplitting.gpuEnableConversion = False
process.siPixelRecHitsPreSplitting.gpuEnableConversion = False
process.pixelTracksHitQuadruplets.gpuEnableConversion = False
process.pixelTracks.gpuEnableConversion = False
process.pixelVertices.gpuEnableConversion = False

return process

Expand All @@ -40,5 +36,6 @@ def customizePixelTracksForProfilingDisableTransfer(process):
process.siPixelClustersPreSplitting.gpuEnableTransfer = False
process.siPixelRecHitsPreSplitting.gpuEnableTransfer = False
process.pixelTracksHitQuadruplets.gpuEnableTransfer = False
process.pixelVertices.gpuEnableTransfer = False

return process
112 changes: 112 additions & 0 deletions RecoPixelVertexing/PixelTrackFitting/interface/FitResult.h
Original file line number Diff line number Diff line change
@@ -0,0 +1,112 @@
#ifndef RecoPixelVertexing_PixelTrackFitting_interface_FitResult_h
#define RecoPixelVertexing_PixelTrackFitting_interface_FitResult_h

#include <cmath>

#include <cuda_runtime.h>
#include <Eigen/Core>
#include <Eigen/Eigenvalues>

#include "HeterogeneousCore/CUDAUtilities/interface/cuda_assert.h"

namespace Rfit
{

constexpr double d = 1.e-4; //!< used in numerical derivative (J2 in Circle_fit())
constexpr unsigned int max_nop = 4; //!< In order to avoid use of dynamic memory


using VectorXd = Eigen::VectorXd;
using MatrixXd = Eigen::MatrixXd;
template<int N>
using MatrixNd = Eigen::Matrix<double, N, N>;
template<int N>
using ArrayNd = Eigen::Array<double, N, N>;
template<int N>
using Matrix2Nd = Eigen::Matrix<double, 2 * N, 2 * N>;
template<int N>
using Matrix3Nd = Eigen::Matrix<double, 3 * N, 3 * N>;
template<int N>
using Matrix2xNd = Eigen::Matrix<double, 2, N>;
template<int N>
using Array2xNd = Eigen::Array<double, 2, N>;
template<int N>
using Matrix3xNd = Eigen::Matrix<double, 3, N>;
template<int N>
using MatrixNx3d = Eigen::Matrix<double, N, 3>;
template<int N>
using MatrixNx5d = Eigen::Matrix<double, N, 5>;
template<int N>
using VectorNd = Eigen::Matrix<double, N, 1>;
template<int N>
using Vector2Nd = Eigen::Matrix<double, 2 * N, 1>;
template<int N>
using Vector3Nd = Eigen::Matrix<double, 3 * N, 1>;
template<int N>
using RowVectorNd = Eigen::Matrix<double, 1, 1, N>;
template<int N>
using RowVector2Nd = Eigen::Matrix<double, 1, 2 * N>;



using Vector2d = Eigen::Vector2d;
using Vector3d = Eigen::Vector3d;
using Vector4d = Eigen::Vector4d;
using Matrix2d = Eigen::Matrix2d;
using Matrix3d = Eigen::Matrix3d;
using Matrix4d = Eigen::Matrix4d;
using Matrix5d = Eigen::Matrix<double, 5, 5>;
using Matrix6d = Eigen::Matrix<double, 6, 6>;
using Vector5d = Eigen::Matrix<double, 5, 1>;

using Matrix3f = Eigen::Matrix3f;
using Vector3f = Eigen::Vector3f;
using Vector4f = Eigen::Vector4f;
using Vector6f = Eigen::Matrix<double, 6, 1>;

using u_int = unsigned int;


struct circle_fit
{
Vector3d par; //!< parameter: (X0,Y0,R)
Matrix3d cov;
/*!< covariance matrix: \n
|cov(X0,X0)|cov(Y0,X0)|cov( R,X0)| \n
|cov(X0,Y0)|cov(Y0,Y0)|cov( R,Y0)| \n
|cov(X0, R)|cov(Y0, R)|cov( R, R)|
*/
int32_t q; //!< particle charge
float chi2 = 0.0;
};

struct line_fit
{
Vector2d par; //!<(cotan(theta),Zip)
Matrix2d cov;
/*!<
|cov(c_t,c_t)|cov(Zip,c_t)| \n
|cov(c_t,Zip)|cov(Zip,Zip)|
*/
double chi2 = 0.0;
};

struct helix_fit
{
Vector5d par; //!<(phi,Tip,pt,cotan(theta)),Zip)
Matrix5d cov;
/*!< ()->cov() \n
|(phi,phi)|(Tip,phi)|(p_t,phi)|(c_t,phi)|(Zip,phi)| \n
|(phi,Tip)|(Tip,Tip)|(p_t,Tip)|(c_t,Tip)|(Zip,Tip)| \n
|(phi,p_t)|(Tip,p_t)|(p_t,p_t)|(c_t,p_t)|(Zip,p_t)| \n
|(phi,c_t)|(Tip,c_t)|(p_t,c_t)|(c_t,c_t)|(Zip,c_t)| \n
|(phi,Zip)|(Tip,Zip)|(p_t,Zip)|(c_t,Zip)|(Zip,Zip)|
*/
float chi2_circle;
float chi2_line;
// Vector4d fast_fit;
int32_t q; //!< particle charge
} __attribute__((aligned(16)));

} // namespace RFit
#endif
Loading

0 comments on commit 2a28f93

Please sign in to comment.