Skip to content

clement-igonet/llm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

3 Commits
 
 
 
 

Repository files navigation

[TOC]

This page exposes steps to make run a coding assistant on your VSCode/VSCodium.

First try

Steps

  • download a llama2 model
  • convert it in gguf format (for llama.cpp execution for CPUs)
  • make run llama.cpp as a service
  • make run VSCode/VSCodium Continue plugin

1 - Prepare your model

The earn time, you should find your prepared model in this place: https://huggingface.co/TheBloke/Llama-2-7B-GGUF.

However, I'll describe how you could apply the conversino by yourself if you need it.

For llama 2 models, let's go to https://ai.meta.com/llama/ and let's follow the instructions.

Example:

From /home/user/llm:

download.sh

After downloading your model, your should have a folder with consolidated.00.pth file. Its parent directory should also contain tokenizer.model file Example:

/home/user/llm/models/llama2/tokenizer.model
/home/user/llm/models/llama2/7B/consolidated.00.pth

Then, let's convert it to gguf format, to let llama.cpp use it.

From /home/user/llm:

docker run \
  -v ./models/llama2:/models \
  ghcr.io/ggerganov/llama.cpp:full \
  --convert /models/7B

Or in a docker-compose.yml file:

  llama-cpp:
    image: ghcr.io/ggerganov/llama.cpp:full
    volumes:
      - ./models/llama2:/models
    command: --convert /models/7B

... And command: docker compose up llama-cpp

2 - Run llama.cpp service

docker run \
  -d \
  -p 64256:64256 \
  -v ./models/llama2:/models \
  ghcr.io/ggerganov/llama.cpp:full \
  --server --host 0.0.0.0 --port 64256 -m /models/7B/ggml-model-f16.gguf -c 2048

Or in a docker-compose.yml file:

  llama-cpp:
    image: ghcr.io/ggerganov/llama.cpp:full
    volumes:
      - ./models/llama2:/models
    command: --server --host 0.0.0.0 --port 64256 -m /models/7B/ggml-model-f16.gguf -c 2048
    ports:
      - 64256:64256

... And command: docker compose up -d llama-cpp

To check your logs:

docker compose logs -f llama-cpp

3 - Run Continue plugin

Here are steps to make the link between VSCode/VSCodium Continue plugin and your llama.cpp service

Install Continue plugin

Could be downloaded from https://marketplace.visualstudio.com/

Direct link I used (install through VSCodium remote ssh, in a linux X64 VM): https://marketplace.visualstudio.com/_apis/public/gallery/publishers/Continue/vsextensions/continue/0.7.0/vspackage?targetPlatform=linux-x64

Then load manually your .vsix file: [email protected].

Setup your Continue plugin to connect to you llama.cpp service

  • Server url: http://172.16.3.63:65432

  • ~/.continue/config.py setup:

from continuedev.libs.llm.llamacpp import LlamaCpp

(...)

config = ContinueConfig(
    allow_anonymous_telemetry=False,
    models=Models(
        default=LlamaCpp(
            max_context_length=2048,
            server_url="http://172.16.3.63:64256")
    ),

(...)

And make it run with with docker.

Here is a convenient extract of my docker-compose.yml file:

  continue:
    image: python:3.10.13-bookworm
    working_dir: /continue
    volumes:
      - ./continue/config.py:/root/.continue/config.py
    command:
      - /bin/bash
      - -c
      - |
        pip install continuedev
        python -m continuedev --host 0.0.0.0 --port 65432
    ports:
      - 65432:65432

Make it run with: docker compose up -d continue

Conclusion

This expose only the first try.

We know clearly that the chat you'll get won't be powerful, but at least we have a full integration chain.

On next try, we'll discover rift full solution.

About

My test about using existing Large Language Models

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published