Skip to content

Commit

Permalink
Add a flag to turn on/off the lowering of scalar broadcasting binary …
Browse files Browse the repository at this point in the history
…ops to NNPA (onnx#2778)

* Add a flag to turn on/off scalar broadcasting binary op in NNPA

Signed-off-by: Tung D. Le <[email protected]>

---------

Signed-off-by: Tung D. Le <[email protected]>
Co-authored-by: Alexandre Eichenberger <[email protected]>
(cherry picked from commit 08d4fed)
  • Loading branch information
tungld authored and cjvolzka committed Apr 3, 2024
1 parent 41e755a commit 28338c4
Show file tree
Hide file tree
Showing 13 changed files with 77 additions and 60 deletions.
4 changes: 0 additions & 4 deletions src/Accelerators/NNPA/Compiler/CMakeLists.txt
Original file line number Diff line number Diff line change
@@ -1,5 +1,3 @@
get_property(OMLibs GLOBAL PROPERTY ONNX_MLIR_LIBS)

add_onnx_mlir_library(OMNNPACompilerOptions
NNPACompilerOptions.cpp

Expand All @@ -12,7 +10,6 @@ add_onnx_mlir_library(OMNNPACompilerOptions
${NNPA_ONNX_MLIR_BIN_ROOT}

LINK_LIBS PUBLIC
${OMLibs}
OMCompilerOptions

ACCEL_INCLUDE_DIRS PRIVATE
Expand All @@ -32,7 +29,6 @@ add_onnx_mlir_library(OMNNPACompilerUtils
${NNPA_ONNX_MLIR_BIN_ROOT}

LINK_LIBS PUBLIC
${OMLibs}
OMNNPACompilerOptions
OMCompilerPasses

Expand Down
7 changes: 7 additions & 0 deletions src/Accelerators/NNPA/Compiler/NNPACompilerOptions.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,13 @@ llvm::cl::opt<bool> nnpaEnableCompilerStickUnstick(
"stick/unstick code. Default is false."),
llvm::cl::init(false), llvm::cl::cat(OnnxMlirOptions));

llvm::cl::opt<bool> nnpaEnableScalarBcastBinary(
"nnpa-enable-scalar-bcast-binary",
llvm::cl::desc("Enable the lowering to NNPA the broadcasting binary ops "
"whose one of the operands is scalar. Currently support "
"ONNXDiv only. Default is false."),
llvm::cl::init(false), llvm::cl::cat(OnnxMlirCommonOptions));

llvm::cl::opt<std::string> nnpaLoadDevicePlacementFile{
"nnpa-load-device-placement-file",
llvm::cl::desc(
Expand Down
2 changes: 2 additions & 0 deletions src/Accelerators/NNPA/Compiler/NNPACompilerOptions.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -49,11 +49,13 @@ typedef enum {
} NNPAPlacementHeuristic;

extern llvm::cl::OptionCategory OnnxMlirOptions;
extern llvm::cl::OptionCategory OnnxMlirCommonOptions;
extern llvm::cl::opt<onnx_mlir::NNPAEmissionTargetType> nnpaEmissionTarget;
extern llvm::cl::opt<bool> nnpaClipToDLFloatRange;
extern llvm::cl::opt<bool> nnpaEnableZHighToOnnx;
extern llvm::cl::opt<bool> nnpaEnableZHighDecomposeStickUnstick;
extern llvm::cl::opt<bool> nnpaEnableCompilerStickUnstick;
extern llvm::cl::opt<bool> nnpaEnableScalarBcastBinary;
extern llvm::cl::opt<NNPAPlacementHeuristic> nnpaPlacementHeuristic;
extern llvm::cl::opt<bool> profileZHighIR;
extern llvm::cl::opt<std::string> nnpaLoadDevicePlacementFile;
Expand Down
4 changes: 2 additions & 2 deletions src/Accelerators/NNPA/Conversion/ONNXToZHigh/CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -11,7 +11,7 @@ add_onnx_mlir_library(OMONNXToZHigh
libzdnn

LINK_LIBS PUBLIC
OMCompilerOptions
OMNNPACompilerOptions
OMONNXOps
OMONNXToKrnl
OMZHighOps
Expand All @@ -32,7 +32,7 @@ add_onnx_mlir_library(OMRewriteONNXForZHigh
libzdnn

LINK_LIBS PUBLIC
OMCompilerOptions
OMNNPACompilerOptions
OMONNXOps
OMONNXToKrnl
OMZHighOps
Expand Down
15 changes: 11 additions & 4 deletions src/Accelerators/NNPA/Conversion/ONNXToZHigh/ONNXLegalityCheck.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -324,12 +324,19 @@ bool isSuitableForZDNN<ONNXDivOp>(
// Check NNPA level.
if (!isCompatibleWithNNPALevel(NNPA_Z16))
return false;
if (!isF32ScalarConstantTensor(A) && !isValidElementTypeAndRank(A))
// Broadcast with a scalar operand.
if (isEnableScalarBcastBinary()) {
if (isF32ScalarConstantTensor(A) && isValidElementTypeAndRank(B))
return true;
if (isF32ScalarConstantTensor(B) && isValidElementTypeAndRank(A))
return true;
}
// Non-broadcast cases.
if (!isValidElementTypeAndRank(A))
return false;
if (!isF32ScalarConstantTensor(B) && !isValidElementTypeAndRank(B))
if (!isValidElementTypeAndRank(B))
return false;
return isF32ScalarConstantTensor(A) || isF32ScalarConstantTensor(B) ||
dimAnalysis->sameShape(A, B);
return dimAnalysis->sameShape(A, B);
}

/// Check legality for ONNXSum.
Expand Down
6 changes: 4 additions & 2 deletions src/Accelerators/NNPA/Conversion/ONNXToZHigh/ONNXToZHigh.td
Original file line number Diff line number Diff line change
Expand Up @@ -29,6 +29,8 @@ include "src/Accelerators/NNPA/Conversion/ONNXToZHigh/ONNXToZHighCommon.td"
/// dag benefitsAdded = (addBenefit 0)
/// >;

def IsEnableScalarBcastBinary: Constraint<CPred<"isEnableScalarBcastBinary()">>;

def IsNoneType : Constraint<CPred<"(($_self).getType().isa<NoneType>())">>;

def IsNotNoneType : Constraint<CPred<"(!($_self).getType().isa<NoneType>())">>;
Expand Down Expand Up @@ -227,7 +229,7 @@ def replaceONNXDivBroadcastPattern1 : Pat<
(GetScalarF32AttrFromConstant $y),
(NoneLayoutAttr)),
(returnType $s_x))),
[(IsF32ScalarConstantTensor $y)], [],
[(IsEnableScalarBcastBinary), (IsF32ScalarConstantTensor $y)], [],
(addBenefit 1)
>;

Expand All @@ -241,7 +243,7 @@ def replaceONNXDivBroadcastPattern2 : Pat<
(NoneLayoutAttr)),
(ZHighStickOp:$s_y $y, (NoneLayoutAttr)),
(returnType $s_y))),
[(IsF32ScalarConstantTensor $x)], [],
[(IsEnableScalarBcastBinary), (IsF32ScalarConstantTensor $x)], [],
(addBenefit 1)
>;

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -14,11 +14,14 @@
//===----------------------------------------------------------------------===//

#include "src/Accelerators/NNPA/Conversion/ONNXToZHigh/ONNXToZHighCommon.hpp"
#include "src/Accelerators/NNPA/Compiler/NNPACompilerOptions.hpp"
#include "src/Dialect/ONNX/DialectBuilder.hpp"

using namespace mlir;
namespace onnx_mlir {

bool isEnableScalarBcastBinary() { return nnpaEnableScalarBcastBinary; }

/// Get transposed tensor by using a permutation array.
Value emitONNXTranspose(
Location loc, PatternRewriter &rewriter, Value x, ArrayRef<int64_t> perms) {
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,8 @@ const std::string DEVICE_ATTRIBUTE = "device";
const std::string CPU_DEVICE = "cpu";
const std::string NNPA_DEVICE = "nnpa";

bool isEnableScalarBcastBinary();

template <typename OP_TYPE>
void addDynamicallyLegalOpFor(mlir::ConversionTarget *target,
const onnx_mlir::DimAnalysis *dimAnalysis,
Expand Down
2 changes: 0 additions & 2 deletions src/Accelerators/NNPA/Pass/NNPAPasses.hpp
Original file line number Diff line number Diff line change
Expand Up @@ -29,11 +29,9 @@ std::unique_ptr<mlir::Pass> createDevicePlacementPass(

/// Add pass for lowering ONNX ops to ZHigh ops.
std::unique_ptr<mlir::Pass> createONNXToZHighPass();
std::unique_ptr<mlir::Pass> createONNXToZHighPass();

/// Add pass for rewriting ONNX ops for ZHigh.
std::unique_ptr<mlir::Pass> createRewriteONNXForZHighPass();
std::unique_ptr<mlir::Pass> createRewriteONNXForZHighPass();

/// Add pass for re-construct ONNX ops from ZHigh ops.
std::unique_ptr<mlir::Pass> createZHighToONNXPass();
Expand Down
2 changes: 1 addition & 1 deletion src/Conversion/KrnlToAffine/KrnlGetLinearOffsetIndex.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -53,7 +53,7 @@ class KrnlGetLinearOffsetIndexLowering : public ConversionPattern {

auto memrefTy = llvm::dyn_cast<MemRefType>(memref.getType());
int64_t rank = memrefTy.getRank();
assert(mapResults.value().size() == rank && "Invalid indices");
assert((int64_t)mapResults.value().size() == rank && "Invalid indices");

// Only lower this op after the memref is normalized.
if (!memrefTy.getLayout().isIdentity())
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
// RUN: onnx-mlir-opt --mcpu=z16 --maccel=NNPA --shape-inference --convert-onnx-to-zhigh --nnpa-enable-scalar-bcast-binary %s -split-input-file | FileCheck %s

// COM: Division by a scalar in case of dynamic dimensions.
func.func @test_div_unknown_scalar1(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
%0 = onnx.Constant dense<8.000000e+00> : tensor<f32>
%1 = "onnx.Div"(%arg0, %0) : (tensor<?x10xf32>, tensor<f32>) -> tensor<*xf32>
"func.return"(%1) : (tensor<*xf32>) -> ()

// CHECK-LABEL: func.func @test_div_unknown_scalar1
// CHECK-SAME: ([[PARAM_0_:%.+]]: tensor<?x10xf32>) -> tensor<?x10xf32> {
// CHECK-DAG: [[VAR_0_:%.+]] = onnx.Constant dense<8.000000e+00> : tensor<f32>
// CHECK-DAG: [[VAR_1_:%.+]] = "zhigh.Stick"([[PARAM_0_]]) {layout = "2D"} : (tensor<?x10xf32>) -> tensor<?x10xf16, #zhigh.layout<{dataLayout = "2D"}>>
// CHECK-DAG: [[VAR_2_:%.+]] = "onnx.Dim"([[PARAM_0_]]) {axis = 0 : si64} : (tensor<?x10xf32>) -> tensor<1xi64>
// CHECK-DAG: [[VAR_3_:%.+]] = "onnx.Dim"([[PARAM_0_]]) {axis = 1 : si64} : (tensor<?x10xf32>) -> tensor<1xi64>
// CHECK: [[VAR_4_:%.+]] = "onnx.Concat"([[VAR_2_]], [[VAR_3_]]) {axis = 0 : si64} : (tensor<1xi64>, tensor<1xi64>) -> tensor<2xi64>
// CHECK: [[VAR_5_:%.+]] = "zhigh.StickifiedConstantOfShape"([[VAR_4_]]) {layout = "2D", value = 8.000000e+00 : f32} : (tensor<2xi64>) -> tensor<?x?xf16, #zhigh.layout<{dataLayout = "2D"}>>
// CHECK: [[VAR_6_:%.+]] = "zhigh.Div"([[VAR_1_]], [[VAR_5_]]) : (tensor<?x10xf16, #zhigh.layout<{dataLayout = "2D"}>>, tensor<?x?xf16, #zhigh.layout<{dataLayout = "2D"}>>) -> tensor<?x10xf16, #zhigh.layout<{dataLayout = "2D"}>>
// CHECK: [[VAR_7_:%.+]] = "zhigh.Unstick"([[VAR_6_]]) : (tensor<?x10xf16, #zhigh.layout<{dataLayout = "2D"}>>) -> tensor<?x10xf32>
// CHECK: return [[VAR_7_]] : tensor<?x10xf32>
// CHECK: }
}

// -----

// COM: Division by a scalar in case of dynamic dimensions.
func.func @test_div_unknown_scalar2(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
%0 = onnx.Constant dense<8.000000e+00> : tensor<f32>
%1 = "onnx.Div"(%0, %arg0) : (tensor<f32>, tensor<?x10xf32>) -> tensor<*xf32>
"func.return"(%1) : (tensor<*xf32>) -> ()

// CHECK-LABEL: func.func @test_div_unknown_scalar2
// CHECK-SAME: ([[PARAM_0_:%.+]]: tensor<?x10xf32>) -> tensor<?x10xf32> {
// CHECK-DAG: [[VAR_0_:%.+]] = onnx.Constant dense<8.000000e+00> : tensor<f32>
// CHECK-DAG: [[VAR_1_:%.+]] = "onnx.Dim"([[PARAM_0_]]) {axis = 0 : si64} : (tensor<?x10xf32>) -> tensor<1xi64>
// CHECK-DAG: [[VAR_2_:%.+]] = "onnx.Dim"([[PARAM_0_]]) {axis = 1 : si64} : (tensor<?x10xf32>) -> tensor<1xi64>
// CHECK: [[VAR_3_:%.+]] = "onnx.Concat"([[VAR_1_]], [[VAR_2_]]) {axis = 0 : si64} : (tensor<1xi64>, tensor<1xi64>) -> tensor<2xi64>
// CHECK-DAG: [[VAR_4_:%.+]] = "zhigh.StickifiedConstantOfShape"([[VAR_3_]]) {layout = "2D", value = 8.000000e+00 : f32} : (tensor<2xi64>) -> tensor<?x?xf16, #zhigh.layout<{dataLayout = "2D"}>>
// CHECK-DAG: [[VAR_5_:%.+]] = "zhigh.Stick"([[PARAM_0_]]) {layout = "2D"} : (tensor<?x10xf32>) -> tensor<?x10xf16, #zhigh.layout<{dataLayout = "2D"}>>
// CHECK: [[VAR_6_:%.+]] = "zhigh.Div"([[VAR_4_]], [[VAR_5_]]) : (tensor<?x?xf16, #zhigh.layout<{dataLayout = "2D"}>>, tensor<?x10xf16, #zhigh.layout<{dataLayout = "2D"}>>) -> tensor<?x10xf16, #zhigh.layout<{dataLayout = "2D"}>>
// CHECK: [[VAR_7_:%.+]] = "zhigh.Unstick"([[VAR_6_]]) : (tensor<?x10xf16, #zhigh.layout<{dataLayout = "2D"}>>) -> tensor<?x10xf32>
// CHECK: return [[VAR_7_]] : tensor<?x10xf32>
// CHECK: }
}

44 changes: 0 additions & 44 deletions test/mlir/accelerators/nnpa/conversion/onnx-to-zhigh/div.mlir
Original file line number Diff line number Diff line change
Expand Up @@ -32,50 +32,6 @@ func.func @test_div_3ds(%arg0 : tensor<10x10x10xf32>, %arg1 : tensor<10x10x10xf3

// -----

// COM: Division by a scalar in case of dynamic dimensions.
func.func @test_div_unknown_scalar1(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
%0 = onnx.Constant dense<8.000000e+00> : tensor<f32>
%1 = "onnx.Div"(%arg0, %0) : (tensor<?x10xf32>, tensor<f32>) -> tensor<*xf32>
"func.return"(%1) : (tensor<*xf32>) -> ()

// CHECK-LABEL: func.func @test_div_unknown_scalar1
// CHECK-SAME: ([[PARAM_0_:%.+]]: tensor<?x10xf32>) -> tensor<?x10xf32> {
// CHECK-DAG: [[VAR_0_:%.+]] = onnx.Constant dense<8.000000e+00> : tensor<f32>
// CHECK-DAG: [[VAR_1_:%.+]] = "zhigh.Stick"([[PARAM_0_]]) {layout = "2D"} : (tensor<?x10xf32>) -> tensor<?x10xf16, #zhigh.layout<{dataLayout = "2D"}>>
// CHECK-DAG: [[VAR_2_:%.+]] = "onnx.Dim"([[PARAM_0_]]) {axis = 0 : si64} : (tensor<?x10xf32>) -> tensor<1xi64>
// CHECK-DAG: [[VAR_3_:%.+]] = "onnx.Dim"([[PARAM_0_]]) {axis = 1 : si64} : (tensor<?x10xf32>) -> tensor<1xi64>
// CHECK: [[VAR_4_:%.+]] = "onnx.Concat"([[VAR_2_]], [[VAR_3_]]) {axis = 0 : si64} : (tensor<1xi64>, tensor<1xi64>) -> tensor<2xi64>
// CHECK: [[VAR_5_:%.+]] = "zhigh.StickifiedConstantOfShape"([[VAR_4_]]) {layout = "2D", value = 8.000000e+00 : f32} : (tensor<2xi64>) -> tensor<?x?xf16, #zhigh.layout<{dataLayout = "2D"}>>
// CHECK: [[VAR_6_:%.+]] = "zhigh.Div"([[VAR_1_]], [[VAR_5_]]) : (tensor<?x10xf16, #zhigh.layout<{dataLayout = "2D"}>>, tensor<?x?xf16, #zhigh.layout<{dataLayout = "2D"}>>) -> tensor<?x10xf16, #zhigh.layout<{dataLayout = "2D"}>>
// CHECK: [[VAR_7_:%.+]] = "zhigh.Unstick"([[VAR_6_]]) : (tensor<?x10xf16, #zhigh.layout<{dataLayout = "2D"}>>) -> tensor<?x10xf32>
// CHECK: return [[VAR_7_]] : tensor<?x10xf32>
// CHECK: }
}

// -----

// COM: Division by a scalar in case of dynamic dimensions.
func.func @test_div_unknown_scalar2(%arg0 : tensor<?x10xf32>) -> tensor<*xf32> {
%0 = onnx.Constant dense<8.000000e+00> : tensor<f32>
%1 = "onnx.Div"(%0, %arg0) : (tensor<f32>, tensor<?x10xf32>) -> tensor<*xf32>
"func.return"(%1) : (tensor<*xf32>) -> ()

// CHECK-LABEL: func.func @test_div_unknown_scalar2
// CHECK-SAME: ([[PARAM_0_:%.+]]: tensor<?x10xf32>) -> tensor<?x10xf32> {
// CHECK-DAG: [[VAR_0_:%.+]] = onnx.Constant dense<8.000000e+00> : tensor<f32>
// CHECK-DAG: [[VAR_1_:%.+]] = "onnx.Dim"([[PARAM_0_]]) {axis = 0 : si64} : (tensor<?x10xf32>) -> tensor<1xi64>
// CHECK-DAG: [[VAR_2_:%.+]] = "onnx.Dim"([[PARAM_0_]]) {axis = 1 : si64} : (tensor<?x10xf32>) -> tensor<1xi64>
// CHECK: [[VAR_3_:%.+]] = "onnx.Concat"([[VAR_1_]], [[VAR_2_]]) {axis = 0 : si64} : (tensor<1xi64>, tensor<1xi64>) -> tensor<2xi64>
// CHECK-DAG: [[VAR_4_:%.+]] = "zhigh.StickifiedConstantOfShape"([[VAR_3_]]) {layout = "2D", value = 8.000000e+00 : f32} : (tensor<2xi64>) -> tensor<?x?xf16, #zhigh.layout<{dataLayout = "2D"}>>
// CHECK-DAG: [[VAR_5_:%.+]] = "zhigh.Stick"([[PARAM_0_]]) {layout = "2D"} : (tensor<?x10xf32>) -> tensor<?x10xf16, #zhigh.layout<{dataLayout = "2D"}>>
// CHECK: [[VAR_6_:%.+]] = "zhigh.Div"([[VAR_4_]], [[VAR_5_]]) : (tensor<?x?xf16, #zhigh.layout<{dataLayout = "2D"}>>, tensor<?x10xf16, #zhigh.layout<{dataLayout = "2D"}>>) -> tensor<?x10xf16, #zhigh.layout<{dataLayout = "2D"}>>
// CHECK: [[VAR_7_:%.+]] = "zhigh.Unstick"([[VAR_6_]]) : (tensor<?x10xf16, #zhigh.layout<{dataLayout = "2D"}>>) -> tensor<?x10xf32>
// CHECK: return [[VAR_7_]] : tensor<?x10xf32>
// CHECK: }
}

// -----

// COM: Do not lower broadcasting onnx.Div to zHigh.
func.func @test_div_not_lowered_diff_shape(%arg0 : tensor<10x10xf32>, %arg1 : tensor<10xf32>) -> tensor<*xf32> {
%0 = "onnx.Div"(%arg0, %arg1) : (tensor<10x10xf32>, tensor<10xf32>) -> tensor<*xf32>
Expand Down
Original file line number Diff line number Diff line change
@@ -1,4 +1,4 @@
// RUN: onnx-mlir --mcpu=z16 --maccel=NNPA --EmitMLIR --printIR %s | FileCheck %s
// RUN: onnx-mlir --mcpu=z16 --maccel=NNPA --EmitMLIR --nnpa-enable-scalar-bcast-binary --printIR %s | FileCheck %s

// Check whether the compiler can remove unstick/stick so that the output of zdnn matmul is passed directly to zdnn div.
func.func @matmul_div(%arg0: tensor<?x12x?x64xf32>) -> tensor<?x?x?x?xf32> {
Expand Down

0 comments on commit 28338c4

Please sign in to comment.