Skip to content

CMake project that builds and installs TensorFlow C++ library.

License

Notifications You must be signed in to change notification settings

ciandt-d1/tensorflow_cc

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

28 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

tensorflow_cc

Build Status

This repository makes possible the usage of the TensorFlow C++ library from the outside of the TensorFlow source code folders and without the use of the Bazel build system.

This repository contains two CMake projects. The tensorflow_cc project downloads, builds and installs the TensorFlow C++ library into the operating system and the example project demonstrates its simple usage.

Installation

1) Install requirements

Ubuntu 16.04+:
# On Ubuntu 16.04, add ubuntu-toolchain-r PPA (for g++-6)
# sudo apt-get install software-properties-common
# sudo add-apt-repository ppa:ubuntu-toolchain-r/test
# sudo apt-get update

sudo apt-get install build-essential curl git cmake unzip autoconf autogen libtool mlocate zlib1g-dev \
                     g++-6 python python3-numpy python3-dev python3-pip python3-wheel wget
sudo updatedb

If you require GPU support on Ubuntu, please also install Bazel, NVIDIA CUDA Toolkit, NVIDIA drivers, cuDNN, and libcupti-dev package. The tensorflow build script will automatically detect CUDA if it is installed in /opt/cuda directory.

Arch Linux:
sudo pacman -S base-devel cmake git unzip mlocate python python-numpy wget
sudo updatedb

For GPU support on Arch, also install the following:

sudo pacman -S gcc6 bazel cuda cudnn nvidia

2) Clone this repository

git clone https://github.com/FloopCZ/tensorflow_cc.git
cd tensorflow_cc

3) Build and install the library

There are two possible ways to build the TensorFlow C++ library:

  1. As a static library (default):
    • Faster to build.
    • Provides only basic functionality, just enough for inferring using an existing network (see contrib/makefile).
    • No GPU support.
  2. As a shared library:
    • Requires Bazel.
    • Slower to build.
    • Provides the full TensorFlow C++ API.
    • GPU support.
cd tensorflow_cc
mkdir build && cd build
# for static library only:
cmake ..
# for shared library only (requires Bazel):
# cmake -DTENSORFLOW_STATIC=OFF -DTENSORFLOW_SHARED=ON ..
make && sudo make install

4) (Optional) Free disk space

# cleanup bazel build directory
rm -rf ~/.cache
# remove the build folder
cd .. && rm -rf build

Usage

1) Write your C++ code:

// example.cpp

#include <tensorflow/core/platform/env.h>
#include <tensorflow/core/public/session.h>
#include <iostream>
using namespace std;
using namespace tensorflow;

int main()
{
    Session* session;
    Status status = NewSession(SessionOptions(), &session);
    if (!status.ok()) {
        cout << status.ToString() << "\n";
        return 1;
    }
    cout << "Session successfully created.\n";
}

2) Link TensorflowCC to your program using CMake

# CMakeLists.txt

find_package(TensorflowCC REQUIRED)
add_executable(example example.cpp)
# link the static Tensorflow library
target_link_libraries(example TensorflowCC::Static)
# link the shared Tensorflow library
# target_link_libraries(example TensorflowCC::Shared)

3) Build and run your program

mkdir build && cd build
cmake .. && make
./example 

If you are still unsure, consult the Dockerfiles for Ubuntu and Arch Linux.

About

CMake project that builds and installs TensorFlow C++ library.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • CMake 83.5%
  • Shell 13.1%
  • C++ 3.4%