Official implementation of the TransT-M, including training code and trained models. Models
This document contains detailed instructions for installing the necessary dependencied for TransT-M. The instructions have been tested on Ubuntu 18.04 system.
- Create and activate a conda environment
conda create -n transt python=3.7
conda activate transt
- Install PyTorch
conda install -c pytorch pytorch=1.5 torchvision
- Install other packages
conda install matplotlib pandas tqdm
pip install opencv-python tb-nightly visdom scikit-image tikzplotlib gdown
conda install cython scipy
pip install pycocotools jpeg4py
pip install wget
pip install shapely==1.6.4.post2
- Setup the environment
Create the default environment setting files.
# Change directory to <PATH_of_TransT>
cd TransT-M
# Environment settings for pytracking. Saved at pytracking/evaluation/local.py
python -c "from pytracking.evaluation.environment import create_default_local_file; create_default_local_file()"
# Environment settings for ltr. Saved at ltr/admin/local.py
python -c "from ltr.admin.environment import create_default_local_file; create_default_local_file()"
You can modify these files to set the paths to datasets, results paths etc.
- Add the project path to environment variables
Open ~/.bashrc, and add the following line to the end. Note to change <path_of_TransT> to your real path.
export PYTHONPATH=<path_of_TransT>:$PYTHONPATH
- Download the pre-trained networks Download the network for TransT-M and put it in the directory set by "network_path" in "pytracking/evaluation/local.py". By default, it is set to pytracking/networks.
- Modify local.py to set the paths to datasets, results paths etc.
- Runing the following commands to train the TransT-M. You can customize some parameters by modifying the settings in transt
- Train the base model of TransT-M
conda activate transt
cd TransT-M/ltr
python -m torch.distributed.launch --nproc_per_node 8 run_training_multigpu.py transt transt
- Train the iou head of TransT-M, you should set a new workspace_dir in local.py and modify the settings.transt_path in transt_iou.py to the path of a trained base transt model
python -m torch.distributed.launch --nproc_per_node 8 run_training_multigpu.py transt transt_iou
- Train the segmentation branch of TransT-M, you should set a new workspace_dir in local.py and modify the settings.transt_path in transt_iou_seg.py to the path of a trained transt_iou model
python -m torch.distributed.launch --nproc_per_node 8 run_training_multigpu.py transt transt_iou_seg
-
We integrated PySOT for evaluation You need to specify the path of the model and dataset in the following files: test_got.py, test_lasot.py, test_nfs.py, test_otb.py, test_tracking.py, test_uav.py
net_path = '/path_to_model' #Absolute path of the model dataset_root= '/path_to_datasets' #Absolute path of the datasets
You need to specify the path of dataset in eval.py
root = '/path_to_datasets' #Absolute path of the datasets
Then run the following commands
conda activate TransT cd TransT-M python -u pysot_toolkit/test_lasot.py --dataset LaSOT #test tracker python pysot_toolkit/eval.py --tracker_path pysot_toolkit/results/ --dataset LaSOT --num 1 #eval tracker python -u pysot_toolkit/test_got.py --dataset GOT-10k #test tracker python -u pysot_toolkit/test_trackingnet.py --dataset Tracking #test tracker python -u pysot_toolkit/test_nfs.py --dataset NFS #test tracker python pysot_toolkit/eval.py --tracker_path pysot_toolkit/results/ --dataset NFS --num 1 #eval tracker python -u pysot_toolkit/test_uav.py --dataset UAV #test tracker python pysot_toolkit/eval.py --tracker_path pysot_toolkit/results/ --dataset UAV --num 1 #eval tracker python -u pysot_toolkit/test_otb.py --dataset OTB #test tracker python pysot_toolkit/eval.py --tracker_path pysot_toolkit/results/ --dataset OTB --num 1 #eval tracker
-
For evaluation on VOT2021, run the following commands. You should modify the paths in trackers.ini, and the net path in transt_VOT2021.py
cd TransT-M/vot2021_workspace vot evaluate TransT_M
This is a modified version of the python framework PyTracking based on Pytorch, also borrowing from PySOT and GOT-10k Python Toolkit. We would like to thank their authors for providing great frameworks and toolkits.
- Xin Chen (email:[email protected])