Our paper Multi-Attribute Enhancement Network for Person Search has been accepted by IJCNN2021. Our code is stored in this repository.
- Clone this repo:
https://github.com/chenlq123/MAE.git && cd MAE
-
Requirements
Python 3.6 with all requirements.txt (except for the first line) dependencies installed. To install run:
pip install -r requirements.txt
-
Download the Trained Model from the Release.
-
Download the Attribute Label from the Release. And put them in dataset, respectively.
-
Before Training
You need to modify the path in the lib/datasets/init.py and lib/model/faster_rcnn_mae.py.
-
Test for CUHK-SYSU or PRW
CUDA_VISIBLE_DEVICES=0 python scripts/test_MAE.py -p pre_logs/cuhk_sysu/
CUDA_VISIBLE_DEVICES=0 python scripts/test_MAE.py -p pre_logs/prw/ --dataset PRW
- Train for CUHK-SYSU or PRW
CUDA_VISIBLE_DEVICES=0 python scripts/train_MAE.py --debug --lr_warm_up -p ./logs/ --batch_size 2 --nw 2 --w_RCNN_loss_bbox 10.0 --epochs 22 --lr 0.003 --lr_decay_step 8
CUDA_VISIBLE_DEVICES=0 python scripts/train_MAE.py --debug --lr_warm_up --dataset PRW -p ./logs/ --batch_size 2 --nw 2 --w_RCNN_loss_bbox 10.0 --epochs 16 --lr 0.003 --lr_decay_step 8
@inproceedings{chen2021mae,
title={Multi-Attribute Enhancement Network for Person Search},
author={Lequan Chen, Wei Xie, Zhigang Tu, Jinglei Guo, Yaping Tao, Xinming Wang},
booktitle={IJCNN},
year={2021}
}