📖 VL-SAT: Visual-Linguistic Semantics Assisted Training for 3D Semantic Scene Graph Prediction in Point Cloud (CVPR 2023)
🔥 If you found the training scheme in VL-SAT is useful, please help to ⭐ it or recommend it to your friends. Thanks🔥
This is a release of the code of our paper VL-SAT: Visual-Linguistic Semantics Assisted Training for 3D Semantic Scene Graph Prediction in Point Cloud (CVPR 2023).
Authors: Ziqin Wang, Bowen Cheng, Lichen Zhao, Dong Xu, Yang Tang, Lu Sheng* (*corresponding author)
conda create -n vlsat python=3.8
conda activate vlsat
pip install -r requirement.txt
pip install torch==1.12.1+cu113 torchvision==0.13.1+cu113 torchaudio==0.12.1 --extra-index-url https://download.pytorch.org/whl/cu113
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.12.1+cu113.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.12.1+cu113.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.12.1+cu113.html
pip install torch-geometric
pip install git+https://github.com/openai/CLIP.git
A. Download 3Rscan and 3DSSG-Sub Annotation, you can follow 3DSSG
B. Generate 2D Multi View Image
# you should motify the path in pointcloud2image.py into your own path
python data/pointcloud2image.py
C. You should arrange the file location like this
data
3DSSG_subset
relations.txt
classes.txt
3RScan
0a4b8ef6-a83a-21f2-8672-dce34dd0d7ca
multi_view
labels.instances.align.annotated.v2.ply
...
D. Train your own clip adapter
python clip_adapter/main.py
or just use the checkpoint
clip_adapter/checkpoint/origin_mean.pth
# Train
python -m main --mode train --config <config_path> --exp <exp_name>
# Eval
python -m main --mode eval --config <config_path> --exp <exp_name>
This repository is partly based on 3DSSG and CLIP repositories.