Implementation of Paper: "Photo-Realistic Single Image Super-Resolution Using a Generative Adversarial Network"(https://arxiv.org/abs/1609.04802) in PyTorch
usage: main.py [-h] [--batchSize BATCHSIZE] [--nEpochs NEPOCHS] [--lr LR]
[--step STEP] [--cuda] [--resume RESUME]
[--start-epoch START_EPOCH] [--clip CLIP] [--threads THREADS]
[--momentum MOMENTUM] [--weight-decay WEIGHT_DECAY]
[--pretrained PRETRAINED] [--vgg_loss]
optional arguments:
-h, --help show this help message and exit
--batchSize BATCHSIZE
training batch size
--nEpochs NEPOCHS number of epochs to train for
--lr LR Learning Rate. Default=1e-4
--step STEP Sets the learning rate to the initial LR decayed by
momentum every n epochs, Default: n=500
--cuda Use cuda?
--resume RESUME Path to checkpoint (default: none)
--start-epoch START_EPOCH
Manual epoch number (useful on restarts)
--clip CLIP Clipping Gradients. Default=0.1
--threads THREADS Number of threads for data loader to use, Default: 1
--momentum MOMENTUM Momentum, Default: 0.9
--weight-decay WEIGHT_DECAY, --wd WEIGHT_DECAY
weight decay, Default: 0
--pretrained PRETRAINED
path to pretrained model (default: none)
--vgg_loss Use content loss?
An example of training usage is shown as follows:
python main.py --cuda --vgg_loss
usage: test.py [-h] [--cuda] [--model MODEL] [--image IMAGE] [--scale SCALE]
PyTorch SRResNet Test
optional arguments:
-h, --help show this help message and exit
--cuda use cuda?
--model MODEL model path
--image IMAGE image name
--scale SCALE scale factor, Default: 4
We convert Set5 test set images to mat format using Matlab, for best PSNR performance, please use Matlab An example of usage is shown as follows:
python test.py --model model/model_epoch_415.pth --image butterfly_GT --scale 4 --cuda
- Please refer Code for Data Generation for creating training files.
- Data augmentations including flipping, rotation, downsizing are adopted.
- We provide a pretrained model trained on 291 images with data augmentation
- So far performance in PSNR is not as good as paper, not even comparable. Any suggestion is welcome
Dataset | SRResNet Paper | SRResNet PyTorch |
---|---|---|
Set5 | 32.05 | 30.87 |
Set14 | 28.49 | 27.90 |
BSD100 | 27.58 | 26.73 |
From left to right are ground truth, bicubic and SRResNet