PINNx
is a library for scientific machine learning and physics-informed learning in JAX.
It is a rewrite of DeepXDE but is enhanced by our
Brain Dynamics Programming (BDP) ecosystem.
For example, it leverages
- brainstate for just-in-time compilation,
- brainunit for dimensional analysis,
- braintools for checkpointing, loss functions, and other utilities.
Define a PINN with explicit variables and physical units.
import brainstate as bst
import brainunit as u
import pinnx
# geometry
geometry = pinnx.geometry.GeometryXTime(
geometry=pinnx.geometry.Interval(-1, 1.),
timedomain=pinnx.geometry.TimeDomain(0, 0.99)
).to_dict_point(x=u.meter, t=u.second)
uy = u.meter / u.second
v = 0.01 / u.math.pi * u.meter ** 2 / u.second
# boundary conditions
bc = pinnx.icbc.DirichletBC(lambda x: {'y': 0. * uy})
ic = pinnx.icbc.IC(lambda x: {'y': -u.math.sin(u.math.pi * x['x'] / u.meter) * uy})
# PDE equation
def pde(x, y):
jacobian = approximator.jacobian(x)
hessian = approximator.hessian(x)
dy_x = jacobian['y']['x']
dy_t = jacobian['y']['t']
dy_xx = hessian['y']['x']['x']
residual = dy_t + y['y'] * dy_x - v * dy_xx
return residual
# neural network
approximator = pinnx.nn.Model(
pinnx.nn.DictToArray(x=u.meter, t=u.second),
pinnx.nn.FNN(
[geometry.dim] + [20] * 3 + [1],
"tanh",
bst.init.KaimingUniform()
),
pinnx.nn.ArrayToDict(y=uy)
)
# problem
problem = pinnx.problem.TimePDE(
geometry,
pde,
[bc, ic],
approximator,
num_domain=2540,
num_boundary=80,
num_initial=160,
)
# training
trainer = pinnx.Trainer(problem)
trainer.compile(bst.optim.Adam(1e-3)).train(iterations=15000)
trainer.compile(bst.optim.LBFGS(1e-3)).train(2000, display_every=500)
trainer.saveplot(issave=True, isplot=True)
- Install the stable version with
pip
:
pip install pinnx --upgrade
The official documentation is hosted on Read the Docs: https://pinnx.readthedocs.io/
We are building the Brain Dynamics Programming ecosystem: https://ecosystem-for-brain-dynamics.readthedocs.io/