Skip to content

[WSDM 2023] Simultaneous Linear Multi-view Attributed Graph Representation Learning and Clustering

Notifications You must be signed in to change notification settings

chakib401/LMGEC

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

LMGEC

This reporsitoty provides the implementation of the experiments for "Simultaneous Linear Multi-view Attributed Graph Representation Learning and Clustering" accepted in WSDM '23.

Running the code

To run experiments on a specific dataset use the correspoding command

Run on DBLP:

python run.py --dataset dblp --beta 2 --temperature 10 --runs 3

Run on ACM:

python run.py --dataset acm --beta 2 --temperature 100 --runs 3

Run on IMDB:

python run.py --dataset imdb --beta 0.2 --temperature 10 --runs 3

Run on Amazon Photos:

python run.py --dataset photos --beta 2 --temperature 10 --runs 3

Run on Wiki:

python run.py --dataset wiki --beta 1 --temperature 1 --runs 3

If you use this code please do cite :

@inproceedings{fettal2022efficient,
  author = {Fettal, Chakib and Labiod, Lazhar and Nadif, Mohamed},
  title = {Simultaneous Linear Multi-view Attributed Graph Representation Learning and Clustering},
  year = {2023},
  publisher = {Association for Computing Machinery},
  doi = {10.1145/3539597.3570367},
  booktitle = {Proceedings of the Sixteenth ACM International Conference on Web Search and Data Mining}
}

About

[WSDM 2023] Simultaneous Linear Multi-view Attributed Graph Representation Learning and Clustering

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages