Skip to content

Commit

Permalink
Merge branch 'master' of github.com:cgrudz/DataAssimilationBenchmarks
Browse files Browse the repository at this point in the history
  • Loading branch information
cgrudz committed Aug 16, 2022
2 parents e30fb61 + 4c1d853 commit 0c0b881
Show file tree
Hide file tree
Showing 114 changed files with 1,131 additions and 21 deletions.
Empty file modified .github/workflows/TagBot.yml
100644 → 100755
Empty file.
Empty file modified .github/workflows/documentation.yml
100644 → 100755
Empty file.
Empty file modified .github/workflows/draft-pdf.yml
100644 → 100755
Empty file.
Empty file modified .gitignore
100644 → 100755
Empty file.
Empty file modified .travis.yml
100644 → 100755
Empty file.
Empty file modified CITATION.bib
100644 → 100755
Empty file.
Empty file modified LICENSE.md
100644 → 100755
Empty file.
654 changes: 642 additions & 12 deletions Manifest.toml
100644 → 100755

Large diffs are not rendered by default.

4 changes: 4 additions & 0 deletions Project.toml
100644 → 100755
Original file line number Diff line number Diff line change
Expand Up @@ -9,6 +9,7 @@ Distributed = "8ba89e20-285c-5b6f-9357-94700520ee1b"
Distributions = "31c24e10-a181-5473-b8eb-7969acd0382f"
Documenter = "e30172f5-a6a5-5a46-863b-614d45cd2de4"
DocumenterTools = "35a29f4d-8980-5a13-9543-d66fff28ecb8"
FileIO = "5789e2e9-d7fb-5bc7-8068-2c6fae9b9549"
ForwardDiff = "f6369f11-7733-5829-9624-2563aa707210"
HDF5 = "f67ccb44-e63f-5c2f-98bd-6dc0ccc4ba2f"
JLD = "4138dd39-2aa7-5051-a626-17a0bb65d9c8"
Expand All @@ -17,9 +18,12 @@ LineSearches = "d3d80556-e9d4-5f37-9878-2ab0fcc64255"
LinearAlgebra = "37e2e46d-f89d-539d-b4ee-838fcccc9c8e"
LsqFit = "2fda8390-95c7-5789-9bda-21331edee243"
Optim = "429524aa-4258-5aef-a3af-852621145aeb"
Plots = "91a5bcdd-55d7-5caf-9e0b-520d859cae80"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Revise = "295af30f-e4ad-537b-8983-00126c2a3abe"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
StatsBase = "2913bbd2-ae8a-5f71-8c99-4fb6c76f3a91"
StatsFuns = "4c63d2b9-4356-54db-8cca-17b64c39e42c"

[compat]
Expand Down
Empty file modified README.md
100644 → 100755
Empty file.
Empty file modified assets/dabenchmarks.png
100644 → 100755
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Empty file modified docs/.gitignore
100644 → 100755
Empty file.
Empty file modified docs/Project.toml
100644 → 100755
Empty file.
Empty file modified docs/make.jl
100644 → 100755
Empty file.
Empty file modified docs/src/home/DataAssimilationBenchmarks.md
100644 → 100755
Empty file.
Empty file modified docs/src/home/Getting Started.md
100644 → 100755
Empty file.
Empty file modified docs/src/home/Introduction.md
100644 → 100755
Empty file.
Empty file modified docs/src/index.md
100644 → 100755
Empty file.
Empty file modified docs/src/submodules/analysis/PlotExperimentData.md
100644 → 100755
Empty file.
Empty file modified docs/src/submodules/analysis/ProcessExperimentData.md
100644 → 100755
Empty file.
22 changes: 22 additions & 0 deletions docs/src/submodules/experiments/D3VARExps.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,22 @@
# D3VARExps

This module defines methods for experiments with classical variational data assimilation with
3D-VAR. Primal cost functions are defined, with their implicit differentiation
performed with automatic differentiation with [JuliaDiff](https://github.com/JuliaDiff)
methods. Development of gradient-based optimization schemes using automatic
differentiation is ongoing, with future development planned to integrate variational
benchmark experiments.

The basic 3D-VAR cost function API is defined as follows
```{julia}
D3_var_cost(x::VecA(T), obs::VecA(T), x_background::VecA(T), state_cov::CovM(T),
obs_cov::CovM(T), kwargs::StepKwargs) where T <: Real
```
where the control variable `x` is optimized, with fixed hyper-parameters defined in a
wrapping function passed to auto-differentiation.

## Methods

```@autodocs
Modules = [DataAssimilationBenchmarks.D3VARExps]
```
Empty file modified docs/src/submodules/experiments/FilterExps.md
100644 → 100755
Empty file.
Empty file modified docs/src/submodules/experiments/GenerateTimeSeries.md
100644 → 100755
Empty file.
Empty file modified docs/src/submodules/experiments/ParallelExperimentDriver.md
100644 → 100755
Empty file.
Empty file modified docs/src/submodules/experiments/SingleExperimentDriver.md
100644 → 100755
Empty file.
Empty file modified docs/src/submodules/experiments/Slurm.md
100644 → 100755
Empty file.
Empty file modified docs/src/submodules/experiments/SmootherExps.md
100644 → 100755
Empty file.
Original file line number Diff line number Diff line change
@@ -0,0 +1,8 @@
# VarAnalysisExperimentDriver


## Methods

```@autodocs
Modules = [DataAssimilationBenchmarks.VarAnalysisExperimentDriver]
```
Empty file modified docs/src/submodules/methods/DeSolvers.md
100644 → 100755
Empty file.
Empty file modified docs/src/submodules/methods/EnsembleKalmanSchemes.md
100644 → 100755
Empty file.
Empty file modified docs/src/submodules/methods/XdVAR.md
100644 → 100755
Empty file.
Empty file modified docs/src/submodules/models/IEEE39bus.md
100644 → 100755
Empty file.
Empty file modified docs/src/submodules/models/L96.md
100644 → 100755
Empty file.
Empty file modified docs/src/submodules/models/ObsOperators.md
100644 → 100755
Empty file.
Empty file modified paper.bib
100644 → 100755
Empty file.
Empty file modified paper.md
100644 → 100755
Empty file.
Empty file modified src/DataAssimilationBenchmarks.jl
100644 → 100755
Empty file.
Empty file modified src/analysis/ProcessExperimentData.jl
100644 → 100755
Empty file.
Empty file modified src/analysis/param_filter/plt_param_rmse_spread_4_pane.py
100644 → 100755
Empty file.
Empty file.
Empty file.
Empty file modified src/analysis/state_filter/plt_filter_rmse_spread_all_stats.py
100644 → 100755
Empty file.
Empty file modified src/analysis/state_filter/plt_filter_rmse_spread_v_ens.py
100644 → 100755
Empty file.
Empty file modified src/analysis/state_filter/plt_state_rmse_spread_2_pane.py
100644 → 100755
Empty file.
Empty file modified src/analysis/state_smoother/heat_plots/all_ens_mda_tuned.pdf
100644 → 100755
Empty file.
Empty file modified src/analysis/state_smoother/heat_plots/all_ens_sda_adaptive.pdf
100644 → 100755
Empty file.
Empty file modified src/analysis/state_smoother/heat_plots/all_ens_sda_tuned.pdf
100644 → 100755
Empty file.
Empty file.
Empty file modified src/analysis/state_smoother/heat_plots/versus_obs_mda_tuned.pdf
100644 → 100755
Empty file.
Empty file modified src/analysis/state_smoother/heat_plots/versus_obs_sda_tuned.pdf
100644 → 100755
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file modified src/analysis/state_smoother/plt_number_of_iterations_6_pane.py
100644 → 100755
Empty file.
Empty file modified src/analysis/state_smoother/plt_optimal_inflation_heat_plot.py
100644 → 100755
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file modified src/analysis/state_smoother/plt_smoother_rmse_spread_v_lag.py
100644 → 100755
Empty file.
Empty file.
Empty file modified src/analysis/state_smoother/plt_smoother_rmse_spread_v_shift.py
100644 → 100755
Empty file.
Empty file.
Empty file.
Empty file modified src/analysis/state_smoother/plt_tuned_inflation_3_pane.py
100644 → 100755
Empty file.
Empty file modified src/data/Rename.jl
100644 → 100755
Empty file.
Empty file modified src/data/rm_data.py
100644 → 100755
Empty file.
315 changes: 315 additions & 0 deletions src/experiments/D3VARExps.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,315 @@
##############################################################################################
module D3VARExps
##############################################################################################
# imports and exports
using Random, Distributions, LinearAlgebra, StatsBase, Statistics, Measures
using JLD2, HDF5, Plots
using ..DataAssimilationBenchmarks, ..ObsOperators, ..DeSolvers, ..XdVAR
##############################################################################################
# Main 3DVAR experiments
##############################################################################################
"""
D3_var_filter_analysis_simple()
"""
function D3_var_filter_analysis_simple()
# time the experiment
t1 = time()

# Define experiment parameters
# number of cycles in experiment
nanl = 40
diffusion = 0.0
tanl = 0.05
γ = [8.0]

# define the observation operator HARD-CODED in this line
H_obs = alternating_obs_operator

# set the integration step size for the ensemble at 0.01 - we are assuming SDE
h = 0.01

# define derivative parameter
dx_params = Dict{String, Vector{Float64}}("F" => [8.0])

# define the dynamical model derivative for this experiment - we are assuming
# Lorenz-96 model
dx_dt = L96.dx_dt

# define integration method
step_model! = rk4_step!

# number of discrete forecast steps
f_steps = convert(Int64, tanl / h)

# set seed
seed = 234
Random.seed!(seed)

# define the initialization
# observation noise
v = rand(Normal(0, 1), 40)
# define the initial observation range and truth reference solution
x_b = zeros(40)
x_t = x_b + v

# define kwargs for the analysis method
# and the underlying dynamical model
kwargs = Dict{String,Any}(
"dx_dt" => dx_dt,
"f_steps" => f_steps,
"step_model" => step_model!,
"dx_params" => dx_params,
"h" => h,
"diffusion" => diffusion,
"gamma" => γ,
)

# create storage for the forecast and analysis statistics
fore_rmse = Vector{Float64}(undef, nanl)
filt_rmse = Vector{Float64}(undef, nanl)

for i in 1:nanl
#print("Iteration: ")
#display(i)
for j in 1:f_steps
# M(x^b)
step_model!(x_b, 0.0, kwargs)
# M(x^t)
step_model!(x_t, 0.0, kwargs)
end

# multivariate - rand(MvNormal(zeros(40), I))
w = rand(Normal(0, 1), 40)
obs = x_t + w

state_cov = I
obs_cov = I

# optimized cost function input and value
x_opt = XdVAR.D3_var_NewtonOp(x_b, obs, x_b, state_cov, H_obs, obs_cov, kwargs)

# compare model forecast and truth twin via RMSE
rmse_forecast = sqrt(msd(x_b, x_t))
fore_rmse[i] = rmse_forecast

# compare optimal forecast and truth twin via RMSE
rmse_filter = sqrt(msd(x_opt, x_t))
filt_rmse[i] = rmse_filter

# reinitializing x_b and x_t for next cycle
x_b = x_opt
end

data = Dict{String,Any}(
"seed" => seed,
"diffusion" => diffusion,
"dx_params" => dx_params,
"gamma" => γ,
"tanl" => tanl,
"nanl" => nanl,
"h" => h,
"fore_rmse" => fore_rmse,
"filt_rmse" => filt_rmse
)

path = pkgdir(DataAssimilationBenchmarks) * "/src/data/time_series/"
name = "L96_3DVAR_time_series_seed_" * lpad(seed, 4, "0") *
"_diff_" * rpad(diffusion, 5, "0") *
#"_F_" * lpad(, 4, "0") *
"_tanl_" * rpad(tanl, 4, "0") *
"_nanl_" * lpad(nanl, 5, "0") *
"_h_" * rpad(h, 5, "0") *
".jld2"

save(path * name, data)

# output time
print("Runtime " * string(round((time() - t1) / 60.0, digits=4)) * " minutes\n")

# make plot
path = pkgdir(DataAssimilationBenchmarks) * "/src/analysis/var_exp/"
t = 1:nanl
plot(t, fore_rmse, marker=(:circle,5), label = "Forecast",
title="Update: Root-Mean-Square Error vs. Time",
legend_position = :outertopright,
margin=15mm, size=(800,500), dpi = 600)
plot!(t, filt_rmse, marker=(:circle,5), label = "Filter")
xlabel!("Time [Cycles]")
ylabel!("Root-Mean-Square Error [RMSE]")
savefig(path * "I_Update_SIMPLE")
end


##############################################################################################
"""
function D3_var_filter_analysis((time_series, γ, is_informed, tuning_factor, is_updated)::NamedTuple{
(:time_series,:γ,:is_informed,:tuning_factor,:is_updated),<:Tuple{String,
Float64,Bool,Float64,Bool}})
Plotting capabilities are commented out for parallel experiment.
"""
function D3_var_filter_analysis((time_series, γ, is_informed, tuning_factor, is_updated)::NamedTuple{
(:time_series,,:is_informed,:tuning_factor,:is_updated),<:Tuple{String,
Float64,Bool,Float64,Bool}})

# time the experiment
t1 = time()

# load the path, timeseries, and associated parameters
path = pkgdir(DataAssimilationBenchmarks) * "/src/data/"
ts = load(path * time_series)::Dict{String,Any}
diffusion = ts["diffusion"]::Float64
dx_params = ts["dx_params"]::ParamDict(Float64)
tanl = ts["tanl"]::Float64
nanl = ts["nanl"]::Int64
# set the integration step size for the ensemble
h = ts["h"]::Float64

# define the observation operator HARD-CODED in this line
H_obs = alternating_obs_operator

# define the dynamical model derivative for this experiment - we are assuming
# Lorenz-96 model
dx_dt = L96.dx_dt

# define integration method
step_model! = rk4_step!

# number of discrete forecast steps
f_steps = convert(Int64, tanl / h)

# set seed
seed = ts["seed"]::Int64
Random.seed!(seed)

# define the initialization
o = ts["obs"]::Array{Float64, 2}
obs_un = 1
obs_cov = obs_un^2.0 * I

# define state covaraince based on input
if is_informed == true
c = cov(o, dims = 2)
state_cov = tuning_factor*Symmetric(c)
else
state_cov = tuning_factor*I
end

x_t = o[:,1]
# observation noise
v = rand(MvNormal(zeros(40), I))
# define the initial background state
x_b = x_t + v;

# define kwargs for the analysis method
# and the underlying dynamical model
kwargs = Dict{String,Any}(
"dx_dt" => dx_dt,
"f_steps" => f_steps,
"step_model" => step_model!,
"dx_params" => dx_params,
"h" => h,
"diffusion" => diffusion,
"γ" => γ,
"gamma" => γ,
"obs_un" => obs_un,
"obs_cov" => obs_cov,
"state_cov" => state_cov
)

# create storage for the forecast and analysis statistics
fore_rmse = Vector{Float64}(undef, nanl)
filt_rmse = Vector{Float64}(undef, nanl)

for i in 1:(nanl-1)
for j in 1:f_steps
# M(x^b)
step_model!(x_b, 0.0, kwargs)
end

w = rand(MvNormal(zeros(40), I))
obs = o[:, i+1] + w

# optimized cost function input and value
x_opt = XdVAR.D3_var_NewtonOp(x_b, obs, x_b, state_cov, H_obs, obs_cov, kwargs)

# generate actual observation value
x_t = o[:, i+1]

# compare model forecast and filter via RMSE
rmse_forecast = sqrt(msd(x_b, x_t))
fore_rmse[i] = rmse_forecast
rmse_filter = sqrt(msd(x_opt, x_t))
filt_rmse[i] = rmse_filter

# reinitializing x_b for next cycle if updated
if is_updated == true
x_b = x_opt
end
end

data = Dict{String,Any}(
"seed" => seed,
"diffusion" => diffusion,
"dx_params" => dx_params,
"gamma" => γ,
"γ" => γ,
"tanl" => tanl,
"nanl" => nanl,
"h" => h,
"fore_rmse" => fore_rmse,
"filt_rmse" => filt_rmse
)

if is_informed == true
inf = "true"
else
inf = "false"
end

if is_updated == true
upd = "true"
else
upd = "false"
end

path = pkgdir(DataAssimilationBenchmarks) * "/src/data/d3_var_exp/"
name = "D3_var_filter_analysis_" * "L96_time_series_seed_" * lpad(seed, 4, "0") *
"_gam_" * rpad(γ, 5, "0") *
"_Informed_" * lpad(inf, 4, "0") *
"_Updated_" * lpad(upd, 4, "0") *
"_Tuned_" * rpad(tuning_factor, 5, "0") *
".jld2"

save(path * name, data)
# output time
print("Runtime " * string(round((time() - t1) / 60.0, digits=4)) * " minutes\n")

#= path = pkgdir(DataAssimilationBenchmarks) * "/src/analysis/var_exp/"
name = "D3_var_filter_analysis_" * "L96_time_series_seed_" * lpad(seed, 4, "0") *
"_gam_" * rpad(γ, 5, "0") *
"_Informed_" * lpad(is_informed, 4, "0") *
"_Updated_" * rpad(is_informed, 4, "0") *
"_Tuned_" * lpad(tuning_factor, 5, "0")
# make plot
t = 1:nanl
fore_rmse_ra = Vector{Float64}(undef, nanl)
filt_rmse_ra = Vector{Float64}(undef, nanl)
for i in 1:nanl
fore_rmse_ra[i] = sum(fore_rmse[1:i])/i
filt_rmse_ra[i] = sum(filt_rmse[1:i])/i
end
plot(t, fore_rmse_ra, label = "Forecast", title="Average Analysis RMSE vs. Time")
plot!(t, filt_rmse_ra, label = "Filter")
plot!([0, 5000], [1, 1])
xlabel!("Time [Cycles]")
ylabel!("Average Analysis RMSE")
savefig(path * name)=#
end

##############################################################################################
# end module

end
Empty file modified src/experiments/FilterExps.jl
100644 → 100755
Empty file.
Empty file modified src/experiments/GenerateTimeSeries.jl
100644 → 100755
Empty file.
Empty file modified src/experiments/ParallelExperimentDriver.jl
100644 → 100755
Empty file.
Empty file modified src/experiments/SingleExperimentDriver.jl
100644 → 100755
Empty file.
Empty file modified src/experiments/SmootherExps.jl
100644 → 100755
Empty file.
Loading

0 comments on commit 0c0b881

Please sign in to comment.