-
Notifications
You must be signed in to change notification settings - Fork 5
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge branch 'master' of github.com:cgrudz/DataAssimilationBenchmarks
- Loading branch information
Showing
114 changed files
with
1,131 additions
and
21 deletions.
There are no files selected for viewing
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Large diffs are not rendered by default.
Oops, something went wrong.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,22 @@ | ||
# D3VARExps | ||
|
||
This module defines methods for experiments with classical variational data assimilation with | ||
3D-VAR. Primal cost functions are defined, with their implicit differentiation | ||
performed with automatic differentiation with [JuliaDiff](https://github.com/JuliaDiff) | ||
methods. Development of gradient-based optimization schemes using automatic | ||
differentiation is ongoing, with future development planned to integrate variational | ||
benchmark experiments. | ||
|
||
The basic 3D-VAR cost function API is defined as follows | ||
```{julia} | ||
D3_var_cost(x::VecA(T), obs::VecA(T), x_background::VecA(T), state_cov::CovM(T), | ||
obs_cov::CovM(T), kwargs::StepKwargs) where T <: Real | ||
``` | ||
where the control variable `x` is optimized, with fixed hyper-parameters defined in a | ||
wrapping function passed to auto-differentiation. | ||
|
||
## Methods | ||
|
||
```@autodocs | ||
Modules = [DataAssimilationBenchmarks.D3VARExps] | ||
``` |
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
8 changes: 8 additions & 0 deletions
8
docs/src/submodules/experiments/VarAnalysisExperimentDriver.md
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
# VarAnalysisExperimentDriver | ||
|
||
|
||
## Methods | ||
|
||
```@autodocs | ||
Modules = [DataAssimilationBenchmarks.VarAnalysisExperimentDriver] | ||
``` |
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file modified
0
src/analysis/param_smoother/lorenz-96/plt_param_rmse_spread_4_pane.py
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/param_smoother/plt_smoother_rmse_spread_all_stats_4_pane.py
100644 → 100755
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Empty file modified
0
src/analysis/state_smoother/heat_plots/all_ens_sda_adaptive.pdf
100644 → 100755
Empty file.
Empty file.
Empty file modified
0
src/analysis/state_smoother/heat_plots/iteration_statistics_tanl_005_shift_1.pdf
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/heat_plots/versus_obs_mda_tuned.pdf
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/heat_plots/versus_obs_sda_tuned.pdf
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/heat_plots/versus_shift_mda_tuned.pdf
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/heat_plots/versus_shift_sda_adaptive.pdf
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/heat_plots/versus_shift_sda_tuned.pdf
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/heat_plots/versus_tanl_mda_tuned.pdf
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/heat_plots/versus_tanl_sda_adaptive.pdf
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/heat_plots/versus_tanl_sda_tuned.pdf
100644 → 100755
Empty file.
Empty file modified
0
...state_smoother/line_plots/rmse_spread_optimium_forecast_lag_v_nens_tanl_005_mda_tuned.pdf
100644 → 100755
Empty file.
Empty file modified
0
...state_smoother/line_plots/rmse_spread_optimium_smoother_lag_v_nens_tanl_005_mda_tuned.pdf
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/line_plots/rmse_spread_v_gamma_mda_N_21.pdf
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/line_plots/rmse_spread_v_gamma_sda_N_21.pdf
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/line_plots/rmse_spread_v_lag_nens_21_tanl_005_mda_tuned.pdf
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/line_plots/rmse_spread_v_lag_nens_21_tanl_005_sda_adaptive.pdf
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/line_plots/rmse_spread_v_lag_nens_21_tanl_005_sda_tuned.pdf
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/line_plots/rmse_spread_v_shift_nens_21_tanl_005_mda_tuned.pdf
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/line_plots/rmse_spread_v_shift_nens_21_tanl_005_sda_tuned.pdf
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/plt_number_of_iterations_6_pane.py
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/plt_optimal_inflation_heat_plot.py
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/plt_smoother_rmse_spread_all_stats.py
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/plt_smoother_rmse_spread_all_stats_4_pane.py
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/plt_smoother_rmse_spread_all_stats_4_pane_verus_obs.py
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/plt_smoother_rmse_spread_all_stats_4_pane_verus_shift.py
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/plt_smoother_rmse_spread_all_stats_4_pane_verus_tanl.py
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/plt_smoother_rmse_spread_fixed_lag_v_shift.py
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/plt_smoother_rmse_spread_obs_v_gamma.py
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/plt_smoother_rmse_spread_obs_v_lag.py
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/plt_smoother_rmse_spread_optimum_forecast_lag_versus_nens.py
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/plt_smoother_rmse_spread_optimum_lag_versus_nens.py
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/plt_smoother_rmse_spread_optimum_lag_versus_tanl.py
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/plt_smoother_rmse_spread_optimum_smoother_lag_versus_nens.py
100644 → 100755
Empty file.
Empty file.
Empty file modified
0
src/analysis/state_smoother/plt_smoother_rmse_spread_v_lag_mda_v_sda.py
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/plt_smoother_rmse_spread_v_shift.py
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/plt_smoother_state_rmse_spread_2_pane.py
100644 → 100755
Empty file.
Empty file modified
0
src/analysis/state_smoother/plt_smoother_state_rmse_spread_6_pane.py
100644 → 100755
Empty file.
Empty file.
Empty file.
Empty file.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,315 @@ | ||
############################################################################################## | ||
module D3VARExps | ||
############################################################################################## | ||
# imports and exports | ||
using Random, Distributions, LinearAlgebra, StatsBase, Statistics, Measures | ||
using JLD2, HDF5, Plots | ||
using ..DataAssimilationBenchmarks, ..ObsOperators, ..DeSolvers, ..XdVAR | ||
############################################################################################## | ||
# Main 3DVAR experiments | ||
############################################################################################## | ||
""" | ||
D3_var_filter_analysis_simple() | ||
""" | ||
function D3_var_filter_analysis_simple() | ||
# time the experiment | ||
t1 = time() | ||
|
||
# Define experiment parameters | ||
# number of cycles in experiment | ||
nanl = 40 | ||
diffusion = 0.0 | ||
tanl = 0.05 | ||
γ = [8.0] | ||
|
||
# define the observation operator HARD-CODED in this line | ||
H_obs = alternating_obs_operator | ||
|
||
# set the integration step size for the ensemble at 0.01 - we are assuming SDE | ||
h = 0.01 | ||
|
||
# define derivative parameter | ||
dx_params = Dict{String, Vector{Float64}}("F" => [8.0]) | ||
|
||
# define the dynamical model derivative for this experiment - we are assuming | ||
# Lorenz-96 model | ||
dx_dt = L96.dx_dt | ||
|
||
# define integration method | ||
step_model! = rk4_step! | ||
|
||
# number of discrete forecast steps | ||
f_steps = convert(Int64, tanl / h) | ||
|
||
# set seed | ||
seed = 234 | ||
Random.seed!(seed) | ||
|
||
# define the initialization | ||
# observation noise | ||
v = rand(Normal(0, 1), 40) | ||
# define the initial observation range and truth reference solution | ||
x_b = zeros(40) | ||
x_t = x_b + v | ||
|
||
# define kwargs for the analysis method | ||
# and the underlying dynamical model | ||
kwargs = Dict{String,Any}( | ||
"dx_dt" => dx_dt, | ||
"f_steps" => f_steps, | ||
"step_model" => step_model!, | ||
"dx_params" => dx_params, | ||
"h" => h, | ||
"diffusion" => diffusion, | ||
"gamma" => γ, | ||
) | ||
|
||
# create storage for the forecast and analysis statistics | ||
fore_rmse = Vector{Float64}(undef, nanl) | ||
filt_rmse = Vector{Float64}(undef, nanl) | ||
|
||
for i in 1:nanl | ||
#print("Iteration: ") | ||
#display(i) | ||
for j in 1:f_steps | ||
# M(x^b) | ||
step_model!(x_b, 0.0, kwargs) | ||
# M(x^t) | ||
step_model!(x_t, 0.0, kwargs) | ||
end | ||
|
||
# multivariate - rand(MvNormal(zeros(40), I)) | ||
w = rand(Normal(0, 1), 40) | ||
obs = x_t + w | ||
|
||
state_cov = I | ||
obs_cov = I | ||
|
||
# optimized cost function input and value | ||
x_opt = XdVAR.D3_var_NewtonOp(x_b, obs, x_b, state_cov, H_obs, obs_cov, kwargs) | ||
|
||
# compare model forecast and truth twin via RMSE | ||
rmse_forecast = sqrt(msd(x_b, x_t)) | ||
fore_rmse[i] = rmse_forecast | ||
|
||
# compare optimal forecast and truth twin via RMSE | ||
rmse_filter = sqrt(msd(x_opt, x_t)) | ||
filt_rmse[i] = rmse_filter | ||
|
||
# reinitializing x_b and x_t for next cycle | ||
x_b = x_opt | ||
end | ||
|
||
data = Dict{String,Any}( | ||
"seed" => seed, | ||
"diffusion" => diffusion, | ||
"dx_params" => dx_params, | ||
"gamma" => γ, | ||
"tanl" => tanl, | ||
"nanl" => nanl, | ||
"h" => h, | ||
"fore_rmse" => fore_rmse, | ||
"filt_rmse" => filt_rmse | ||
) | ||
|
||
path = pkgdir(DataAssimilationBenchmarks) * "/src/data/time_series/" | ||
name = "L96_3DVAR_time_series_seed_" * lpad(seed, 4, "0") * | ||
"_diff_" * rpad(diffusion, 5, "0") * | ||
#"_F_" * lpad(, 4, "0") * | ||
"_tanl_" * rpad(tanl, 4, "0") * | ||
"_nanl_" * lpad(nanl, 5, "0") * | ||
"_h_" * rpad(h, 5, "0") * | ||
".jld2" | ||
|
||
save(path * name, data) | ||
|
||
# output time | ||
print("Runtime " * string(round((time() - t1) / 60.0, digits=4)) * " minutes\n") | ||
|
||
# make plot | ||
path = pkgdir(DataAssimilationBenchmarks) * "/src/analysis/var_exp/" | ||
t = 1:nanl | ||
plot(t, fore_rmse, marker=(:circle,5), label = "Forecast", | ||
title="Update: Root-Mean-Square Error vs. Time", | ||
legend_position = :outertopright, | ||
margin=15mm, size=(800,500), dpi = 600) | ||
plot!(t, filt_rmse, marker=(:circle,5), label = "Filter") | ||
xlabel!("Time [Cycles]") | ||
ylabel!("Root-Mean-Square Error [RMSE]") | ||
savefig(path * "I_Update_SIMPLE") | ||
end | ||
|
||
|
||
############################################################################################## | ||
""" | ||
function D3_var_filter_analysis((time_series, γ, is_informed, tuning_factor, is_updated)::NamedTuple{ | ||
(:time_series,:γ,:is_informed,:tuning_factor,:is_updated),<:Tuple{String, | ||
Float64,Bool,Float64,Bool}}) | ||
Plotting capabilities are commented out for parallel experiment. | ||
""" | ||
function D3_var_filter_analysis((time_series, γ, is_informed, tuning_factor, is_updated)::NamedTuple{ | ||
(:time_series,:γ,:is_informed,:tuning_factor,:is_updated),<:Tuple{String, | ||
Float64,Bool,Float64,Bool}}) | ||
|
||
# time the experiment | ||
t1 = time() | ||
|
||
# load the path, timeseries, and associated parameters | ||
path = pkgdir(DataAssimilationBenchmarks) * "/src/data/" | ||
ts = load(path * time_series)::Dict{String,Any} | ||
diffusion = ts["diffusion"]::Float64 | ||
dx_params = ts["dx_params"]::ParamDict(Float64) | ||
tanl = ts["tanl"]::Float64 | ||
nanl = ts["nanl"]::Int64 | ||
# set the integration step size for the ensemble | ||
h = ts["h"]::Float64 | ||
|
||
# define the observation operator HARD-CODED in this line | ||
H_obs = alternating_obs_operator | ||
|
||
# define the dynamical model derivative for this experiment - we are assuming | ||
# Lorenz-96 model | ||
dx_dt = L96.dx_dt | ||
|
||
# define integration method | ||
step_model! = rk4_step! | ||
|
||
# number of discrete forecast steps | ||
f_steps = convert(Int64, tanl / h) | ||
|
||
# set seed | ||
seed = ts["seed"]::Int64 | ||
Random.seed!(seed) | ||
|
||
# define the initialization | ||
o = ts["obs"]::Array{Float64, 2} | ||
obs_un = 1 | ||
obs_cov = obs_un^2.0 * I | ||
|
||
# define state covaraince based on input | ||
if is_informed == true | ||
c = cov(o, dims = 2) | ||
state_cov = tuning_factor*Symmetric(c) | ||
else | ||
state_cov = tuning_factor*I | ||
end | ||
|
||
x_t = o[:,1] | ||
# observation noise | ||
v = rand(MvNormal(zeros(40), I)) | ||
# define the initial background state | ||
x_b = x_t + v; | ||
|
||
# define kwargs for the analysis method | ||
# and the underlying dynamical model | ||
kwargs = Dict{String,Any}( | ||
"dx_dt" => dx_dt, | ||
"f_steps" => f_steps, | ||
"step_model" => step_model!, | ||
"dx_params" => dx_params, | ||
"h" => h, | ||
"diffusion" => diffusion, | ||
"γ" => γ, | ||
"gamma" => γ, | ||
"obs_un" => obs_un, | ||
"obs_cov" => obs_cov, | ||
"state_cov" => state_cov | ||
) | ||
|
||
# create storage for the forecast and analysis statistics | ||
fore_rmse = Vector{Float64}(undef, nanl) | ||
filt_rmse = Vector{Float64}(undef, nanl) | ||
|
||
for i in 1:(nanl-1) | ||
for j in 1:f_steps | ||
# M(x^b) | ||
step_model!(x_b, 0.0, kwargs) | ||
end | ||
|
||
w = rand(MvNormal(zeros(40), I)) | ||
obs = o[:, i+1] + w | ||
|
||
# optimized cost function input and value | ||
x_opt = XdVAR.D3_var_NewtonOp(x_b, obs, x_b, state_cov, H_obs, obs_cov, kwargs) | ||
|
||
# generate actual observation value | ||
x_t = o[:, i+1] | ||
|
||
# compare model forecast and filter via RMSE | ||
rmse_forecast = sqrt(msd(x_b, x_t)) | ||
fore_rmse[i] = rmse_forecast | ||
rmse_filter = sqrt(msd(x_opt, x_t)) | ||
filt_rmse[i] = rmse_filter | ||
|
||
# reinitializing x_b for next cycle if updated | ||
if is_updated == true | ||
x_b = x_opt | ||
end | ||
end | ||
|
||
data = Dict{String,Any}( | ||
"seed" => seed, | ||
"diffusion" => diffusion, | ||
"dx_params" => dx_params, | ||
"gamma" => γ, | ||
"γ" => γ, | ||
"tanl" => tanl, | ||
"nanl" => nanl, | ||
"h" => h, | ||
"fore_rmse" => fore_rmse, | ||
"filt_rmse" => filt_rmse | ||
) | ||
|
||
if is_informed == true | ||
inf = "true" | ||
else | ||
inf = "false" | ||
end | ||
|
||
if is_updated == true | ||
upd = "true" | ||
else | ||
upd = "false" | ||
end | ||
|
||
path = pkgdir(DataAssimilationBenchmarks) * "/src/data/d3_var_exp/" | ||
name = "D3_var_filter_analysis_" * "L96_time_series_seed_" * lpad(seed, 4, "0") * | ||
"_gam_" * rpad(γ, 5, "0") * | ||
"_Informed_" * lpad(inf, 4, "0") * | ||
"_Updated_" * lpad(upd, 4, "0") * | ||
"_Tuned_" * rpad(tuning_factor, 5, "0") * | ||
".jld2" | ||
|
||
save(path * name, data) | ||
# output time | ||
print("Runtime " * string(round((time() - t1) / 60.0, digits=4)) * " minutes\n") | ||
|
||
#= path = pkgdir(DataAssimilationBenchmarks) * "/src/analysis/var_exp/" | ||
name = "D3_var_filter_analysis_" * "L96_time_series_seed_" * lpad(seed, 4, "0") * | ||
"_gam_" * rpad(γ, 5, "0") * | ||
"_Informed_" * lpad(is_informed, 4, "0") * | ||
"_Updated_" * rpad(is_informed, 4, "0") * | ||
"_Tuned_" * lpad(tuning_factor, 5, "0") | ||
# make plot | ||
t = 1:nanl | ||
fore_rmse_ra = Vector{Float64}(undef, nanl) | ||
filt_rmse_ra = Vector{Float64}(undef, nanl) | ||
for i in 1:nanl | ||
fore_rmse_ra[i] = sum(fore_rmse[1:i])/i | ||
filt_rmse_ra[i] = sum(filt_rmse[1:i])/i | ||
end | ||
plot(t, fore_rmse_ra, label = "Forecast", title="Average Analysis RMSE vs. Time") | ||
plot!(t, filt_rmse_ra, label = "Filter") | ||
plot!([0, 5000], [1, 1]) | ||
xlabel!("Time [Cycles]") | ||
ylabel!("Average Analysis RMSE") | ||
savefig(path * name)=# | ||
end | ||
|
||
############################################################################################## | ||
# end module | ||
|
||
end |
Empty file.
Empty file.
Empty file.
Empty file.
Empty file.
Oops, something went wrong.