Skip to content

Use circular arcs to graphically illustrate proportions in MATLAB.

License

Notifications You must be signed in to change notification settings

cgallimore25/donutPlot

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

DOI View circPercent on File Exchange Open in MATLAB Online

donutPlot

Use circular arcs to graphically illustrate proportions and percentages in MATLAB. For a fully comprehensive demo of usage, special case handling, and the latest features, checkout the demo file donutPlot_demo.mlx.

This function was designed to allow more complicated inputs and user control over the native 'pie.m' function, while producing arcs in exactly the same way as pie() wedges in its handling of uncommon cases. It further expands pie() by supporting matrix input, direct specification of 'facecolor', and compatibility with colormap() calls. With exception of categorical data treatment, it also builds upon MATLAB's 2023 introduction of donutchart() by allowing most of the same essential features and more. One example is a 'concentric' plotting style embedding multiple groups in a single donut, control over ring separation with this style, and addition of a custom radial legend to indicate group membership.

Catalog of changes in version 2.0.1 (formerly 'circPercent'):

  • Converted plotted elements from line to patch objects for both fill and edge customization
  • Support for concentric plotting style, embedding data series inside-out
  • New name, value pairs for user-defined start angle, donut radius, transparency, linewidth, and text color
  • Transitioned to an input parser object for flexible argument handling
  • Modularization of coordinate calculations, special cases, and directional control
  • Added ring separation parameter for user control of visible spacing (specific to 'concentric' style)
  • Support for a radial legend indicating groups (specific to 'concentric' style)

Syntax:

donutPlot(data)

donutPlot(data, ax)

donutPlot(data, Name, Value, ...)

donutPlot(data, ax, Name, Value, ...)

h = donutPlot(_)

Input Arguments:

(Required)

  • data - A scalar, vector, or matrix of proportions/percentages. The rows are assumed to be groups, or 'series' of data, and the columns are the components to the total. [scalar | vector | matrix]

(Optional)

  • ax - Displays the plot in the target axes specified by handle ax.

Output Arguments:

(Optional)

  • h - Figure handle of donut plot (arc patches, text, colors). [structure]

Name-Value Pair Arguments:

(Optional; case insensitive)

  • 'dim' - the dimension containing each sub-cat/component of the total e.g. if data series are distributed along the rows, such that sub-categories/components are arranged along the columns, dim argument would be 2 (default). If data series are distributed along columns and sub-cats along the rows, your dim arg would be 1. If input is matrix, the function assumes different groups/series are row-wise which 'dim' overrides. [2 (default) | non-negative integer]

  • 'faceColor' - an m x 3 vector or matrix specifying RGB triplet(s), or a 1 x m array assigning face color values directly (e.g. 1:m). [m x 3 vector | matrix]

  • 'edgeColor' - same as 'facecolor', but only specify one that will be applied to all patch edges (e.g. 'w', or 'k'). [RGB triplet | char]

  • 'textColor' - same as 'edgecolor' [RGB triplet | char]

  • 'faceAlpha' - scalar in range [0, 1] specifying opacity.

  • 'lineWidth' - a positive scalar value in points (1 pt = 1/72 inches).

  • 'orientation' - 'horizontal', 'vertical', or 'concentric'; this argument only exerts effects for more than 1 data series, determining whether they are plotted from left-to-right, top-to-bottom, or 'inside-to-outside', respectively. One letter shorthand forms are available for each. ['horizontal' | 'vertical' | 'concentric' | 'h' | 'v' | 'c']

  • 'precision' - specifies the rounding precision for text labels (i.e. the max number of decimal places to keep) [0 | 1 | ... n | non-negative scalar]

  • 'innerRadius' - scalar in range [0, 1] specifying the inner radius of patches as a proportion of the outer radius. A value of '0' creates a pie chart; a value of '1' creates a ring with no visible slices [0.65 (default) | scalar]

  • 'outerRadius' - a non-negative scalar specifying outer patch radius. Most applicable for 'horizontal' or 'vertical' orientations, whereas 'concentric' defaults to ring widths of radius 1 and this argument is ignored.

  • 'startAngle' - scalar value in degrees specifying start angle where patches emanate. 0 corresponds to 3 o'clock. Positive values rotate counterclockwise, negative values clockwise. [0 (default) | scalar]

  • 'direction' - specifies direction patches step from 'startAngle'. ['clockwise', 'cw', | 'counter-clockwise', 'ccw' (default)]

  • 'scheme' - 'category' or 'series', determines the coloring scheme. In one case, your 'color' matrix may represent the color you want each common 'category' to be for all series (default). In another case, you may be specifying the base color you want your percentage components to be for each 'series'. In this option, subsequent percentages will be plotted darker. ['category' | 'series']

  • 'patchRes' - a positive scalar value specifying the number of points used to represent the largest arc. Subsequent (smaller) arcs are represented in proportion to this. [300 (default) | positive scalar]

  • 'showLabels' - permits suppression of overlaying value labels when set to false. [true (default) | false | 0 | 1]

  • 'showLegend' - specific to the 'concentric' plotting orientation, followed by a string array of legend labels equal to n groups. [string array]

Examples

Example 1: Minimum working example

% Create some data
data= [0.2445	0.2554	0.3237	0.1762;
       0.1924	0.2255	0.1672	0.4147;
       0.1513	0.2769	0.2749	0.2967;
       0.1402	0.3639	0.2439	0.2518]; 

total= sum(data, 2);  % show groups are rows and components are cols

% Create plot
figure;
donutPlot(data);

Notice that the function implicitly assumes that groups are distributed along the rows. You can achieve the equivalent output in this example using:

% Create plot
figure;
donutPlot(data, 'dim', 2);

or '1' if your input data is transposed (column = group, rows = components).

Example 2: Orientation customization

data= [0.2445	0.2554	0.3237	0.1762;
       0.1924	0.2255	0.1672	0.4147;
       0.1513	0.2769	0.2749	0.2967;
       0.1402	0.3639	0.2439	0.2518]; 

figure;
donutPlot(data, 'orientation', 'vertical');

data= [0.2445	0.2554	0.3237	0.1762;
       0.1924	0.2255	0.1672	0.4147;
       0.1513	0.2769	0.2749	0.2967;
       0.1402	0.3639	0.2439	0.2518]; 

figure;
donutPlot(data, 'orientation', 'concentric');

All of these options support a shorthand specification as well by using 'h', 'v', or 'c' for the corresponding above inputs.

Example 3: Altering inner radius & label presence

The 'innerRadius' Name,Value pair specifies the inner radius of the donut as a proportion of the outer radius. This means you can plot a simple pie chart with input 0, and invisible rings with input 1 (default 0.65). I do this in a loop because the function currently only supports a scalar, common radius applied to all groups in the case of matrix input. Plot one subject's data and remove text using the 'showLabels' pair for simplicity.

Notice here that a second, non- Name,Val pair argument is passed to donutPlot() as the target axis, whereas above it was not. This is the recommended usage for combining donutPlot() with subplot() calls -- especially in loops, which can behave unpredictably. Subplot usage can have some advantages: for example, individual plots have their own axis, as opposed to one axis containing all plots (default), offering greater control over custom annotations specific to one plot but not the others. For example, the dp handle created in the loop below can be used as follows:

data= [0.2445	0.2554	0.3237	0.1762;
       0.1924	0.2255	0.1672	0.4147;
       0.1513	0.2769	0.2749	0.2967;
       0.1402	0.3639	0.2439	0.2518];
 
n_subj= size(data, 1);  % make variable for n groups / subjects

r= 0.9:-0.3:0; 

figure;
for s= 1:nr
    ax(s)= subplot(1, nr, s); hold on; 
    dp(s)= donutPlot(data(1, :), ax(s), 'innerRadius', r(s), 'showLabels', false);
end

dp(1).axH.Title.String= strcat("inner radius = ", num2str(r(1)));
dp(4).axH.Title.String= strcat("inner radius = ", num2str(r(4)));

Example 4: Start angle, direction, & text precision customization

The 'startAngle' Name,Value pair allows specification of the angle where all first component patches emanate. Positions correspond to the unit circle, so 0 is 3 o'clock (default), and 90 is midnight. Positive angles step counter-clockwise, whereas negative angles will step clockwise. You can further specify the direction to continue in using 'direction' and longform or shortform values such as 'clockwise' / 'cw' or 'counter-clockwise' / 'ccw' (default). Adding the 'precision' pair here too to specify the max decimal place reported, cleaning up the text a bit.

data= [0.2445	0.2554	0.3237	0.1762;
       0.1924	0.2255	0.1672	0.4147;
       0.1513	0.2769	0.2749	0.2967;
       0.1402	0.3639	0.2439	0.2518];

figure;  
sp(1)= subplot(1, 3, 1);
donutPlot(data, sp(1), 'orientation', 'c', 'precision', 1);
sp(2)= subplot(1, 3, 2);
donutPlot(data, sp(2), 'orientation', 'c', 'precision', 0, 'startangle', 90);
sp(3)= subplot(1, 3, 3);
donutPlot(data, sp(3), 'orientation', 'c', 'precision', 0, 'startangle', 90,  'direction', 'cw');

Example 5: Line and color specification

Conforms to the same specs used by default in MATLAB for 'edgeColor', 'lineWidth', 'textColor'. I introduce these separately from 'faceColor' (below) because these 3 apply input to all patch or text elements, whereas 'faceColor' can receive a 1-to-1 mapping for all patch element faces (i.e. vector or matrix input).

data= [0.2445	0.2554	0.3237	0.1762;
       0.1924	0.2255	0.1672	0.4147;
       0.1513	0.2769	0.2749	0.2967;
       0.1402	0.3639	0.2439	0.2518];

figure;  
subplot(1, 3, 1)
donutPlot(data, 'orientation', 'c', 'precision', 0);
subplot(1, 3, 2)
donutPlot(data, 'orientation', 'c', 'edgecolor', 'w', 'linewidth', 2, 'precision', 0);
subplot(1, 3, 3)
donutPlot(data, 'orientation', 'c', 'edgecolor', [1 1 1], 'linewidth', 2, 'textcolor', 'r', 'startangle', 90, 'precision', 0);

Example 6: Facecolor customization

This function utilizes distinguishable_colors.m (File exchange) to create colors for you, though you are free to pass your own custom color arguments in using 'facecolor' followed by an m x 3 array input, where m == size(data, 1).

data= [0.2445	0.2554	0.3237	0.1762;
       0.1924	0.2255	0.1672	0.4147;
       0.1513	0.2769	0.2749	0.2967;
       0.1402	0.3639	0.2439	0.2518];

simple_colrs= [1 0 0;
              0 0 1;
              0 1 1;
              1 0 1];

figure;
donutPlot(data, 'facecolor', simple_colrs, 'precision', 0, 'edgecolor', 'w', 'linewidth', 2);

Example 7: Color scheme

By default, the colors are assigned to the categories (i.e. the various components making up the totals for each group). However, you can alter the color scheme to assign the different colors to each data series, which darkens the custom input (or default) colors for the subsequent components.

data= [0.2445	0.2554	0.3237	0.1762;
       0.1924	0.2255	0.1672	0.4147;
       0.1513	0.2769	0.2749	0.2967;
       0.1402	0.3639	0.2439	0.2518];

figure;
donutPlot(data, 'scheme', 'series', 'precision', 1, 'edgecolor', 'w', 'linewidth', 2);

Example 8: Usage with colormap() call

Version 2.0.0 uses 'FaceVertexCData' to alter patch color, meaning it can also directly be assigned a value for usage with default colormaps.

data= [0.2445	0.2554	0.3237	0.1762;
       0.1924	0.2255	0.1672	0.4147;
       0.1513	0.2769	0.2749	0.2967;
       0.1402	0.3639	0.2439	0.2518];

figure;
donutPlot(data, 'orientation', 'c', 'facecolor', 1:4, 'edgecolor', 'w', 'linewidth', 2, 'precision', 0);

figure;
donutPlot(data, 'orientation', 'c', 'facecolor', 1:4, 'edgecolor', 'w', 'linewidth', 2, 'precision', 0);
colormap(cool)

In the demo .mlx file, I detail some additional examples of how you could use 4 different colormaps all in the same figure (1 for each subplot).

Example 9: Recommended usage with legend()

A basic, empty 'legend()' call will produce an unwieldy display of all patches which redundantly repeat the same colors used across all series. We can truncate this by editing our legend call to ignore remaining entries (by passing an empty string) and only plot those common to multiple data series. Anyone who's used a legend in MATLAB with 'pie.m' knows that its default location will likely obscure the data. We can use the 'Position' property to achieve a cleaner look.

NOTE: This custom colormap is included as a local function in the .mlx demo file.

data= [0.2445	0.2554	0.3237	0.1762;
       0.1924	0.2255	0.1672	0.4147;
       0.1513	0.2769	0.2749	0.2967;
       0.1402	0.3639	0.2439	0.2518];

lgd_pad= strings(1, numel(data) - size(data, 2) );   % array of empty strings to pad
lgd_txt= ["Surface", "Below Surface", "Deep", "Very Deep", lgd_pad];

figure;
donutPlot(data, 'facecolor', 1:4, 'edgecolor', 'w', 'linewidth', 2, 'precision', 0);
colormap(owt)
legend(lgd_txt, "NumColumns", 2, "Position", [0.5 0.1 0.1 0.15])

figure;
donutPlot(data, 'orientation', 'c', 'facecolor', 1:4, 'edgecolor', 'w', 'linewidth', 2, 'precision', 0);
colormap(owt)
legend(lgd_txt, "Position", [0.1 0.75 0.1 0.2])

Example 10: Ring separation

Version 2.0.1 introduced 'ringSep', specific to the 'concentric' style, as well as a more unified design which allows this style to obey user defined 'innerRadius' and 'outerRadius' arguments. 'ringSep', like 'innerRadius', behaves much like a duty cycle, defining a proportion of the ring's unit radius to instead be a gap between rings. This opens doors for creativity in your plot design. Suppress labels once more for visibility.

figure;   
subplot(1, 3, 1);
donutPlot(data, 'orientation', 'c', 'facecolor', 1:4, 'edgecolor', 'w', 'precision', 0, 'innerradius', 0.7, 'showlabels', false);
colormap(owt);
title('Fisheye');
subplot(1, 3, 2);
donutPlot(data, 'orientation', 'c', 'facecolor', 1:4, 'edgecolor', 'none', 'precision', 0, 'innerradius', 0, 'ringsep', 0.5, 'showlabels', false);
colormap(owt);
title('Bullseye');
subplot(1, 3, 3);
donutPlot(data, 'orientation', 'c', 'facecolor', 1:4, 'edgecolor', 'w', 'linewidth', 2, 'precision', 0, 'innerradius', 0, 'ringsep', 0, 'showlabels', false);
colormap(owt);
title('Compact');

Example 11: Radial legend

Also specific to the 'concentric' style is a radial legend invoked by 'showLegend' and its value, a string array of legend labels equal to the number of groups. Take the 'Compact' style from above.

figure;
donutPlot(data, 'orientation', 'c', 'innerradius', 0, 'ringsep', 0, ...
                'facecolor', 1:4, 'edgecolor', 'w', 'linewidth', 3, ...
                'precision', 0,  'showlegend', ["AL", "TA", "TR", "YU"]);
colormap(owt);

About

Use circular arcs to graphically illustrate proportions in MATLAB.

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages