Skip to content
/ GTT Public

Codebase for CIKM '24 paper -- General Time Transformer: an Encoder-only Foundation Model for Zero-Shot Multivariate Time Series Forecasting

Notifications You must be signed in to change notification settings

cfeng783/GTT

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

44 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

This repository provides the minimal code for running inference of GTT.

Getting Started

Install dependencies (with python 3.10)

pip install -r requirements.txt

Run Experiments

Run the zero-shot experiments

cd src
python test_zeroshot.py --gpu [GPUs] --batch_size [BS] --mode [mode] --data [DS] --uni [uni]

Specify mode to one of the following: tiny, small, large.

Specify data to one of the following: m1, m2, h1, h2, electricity, weather, traffic, ill.

Specify uni to 0 or 1, 0: multivariate forecast, 1: univariate forecast

Run the fine-tune experiments

cd experiments
python test_finetune.py --gpu [GPUs] --batch_size [BS] --mode [mode] --data [DS] --uni [uni] --epochs [eps]

Use GTT models for zero-shot forecast on your own data

It is rather straightforward to use GTT models for zero-shot forecast on your own data (even with only CPUs), check the tutorial.

Cite

Cheng Feng, Long Huang, and Denis Krompass. 2024. General Time Transformer: an Encoder-only Foundation Model for Zero-Shot Multivariate Time Series Forecasting. In Proceedings of the 33rd ACM International Conference on Information and Knowledge Management (CIKM ’24), October 21–25, 2024, Boise, ID, USA. ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3627673.3679931

About

Codebase for CIKM '24 paper -- General Time Transformer: an Encoder-only Foundation Model for Zero-Shot Multivariate Time Series Forecasting

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published