Skip to content
/ mbed-ls Public
forked from ARMmbed/mbed-ls

mbedls is a set of tools inherited from mbed-lmtools and used to detect mbed-enabled devices on the host (Windows, Linux and Mac OS)

License

Notifications You must be signed in to change notification settings

ccli8/mbed-ls

 
 

Repository files navigation

Build status Coverage Status PyPI version

Table of contents

Description

mbed-ls is a Python 2.7 module that detects and lists mbed-enabled devices connected to the host computer. It will be delivered as a redistributable Python module (package) and command line tool.

Currently supported operating system:

  • Windows 7.
  • Ubuntu.
  • Linux (generic).
  • Mac OS X (Darwin).
  • Raspbian Jessie Lite.

Rationale

When connecting more than one mbed-enabled device to the host computer, it takes time to manually check the platforms' binds:

  • Mount point (MSD / disk).
  • Virtual serial port (CDC).
  • mbed's TargetID and generic platform name.

mbed-ls provides these points of information for all connected boards at once in a simple console (terminal) output.

Installation

Installation from PyPI (Python Package Index)

mbed-ls module is redistributed via PyPI. We recommend you use the application pip.

Note: Python 2.7.9 onwards include pip by default, so you may have pip already.

To install mbed-ls from PyPI use command:

$ pip install mbed-ls --upgrade

Installation from Python sources

Prerequisites: you need to have Python 2.7.x installed on your system.

Note: if your OS is Windows, please follow the installation instructions for the serial port driver.

To install the mbed-ls module:

Clone the mbed-ls repository. The following example uses the GitHub command line tools, but you can do this directly from the website:

$ git clone https://github.com/ARMmbed/mbed-ls.git

Change the directory to the mbed-ls repository directory:

$ cd mbed-ls

Now you are ready to install mbed-ls.

$ python setup.py install

On Linux, if you have a problem with permissions please try to use sudo:

$ sudo python setup.py install

The above command should install the mbed-ls Python package (import mbed_lstools) and mbedls command.

To test if your installation succeeded try the mbedls command:

$ mbedls

Or use the Python interpreter and import mbed_lstools:

$ python
Python 2.7.8 (default, Jun 30 2014, 16:03:49) [MSC v.1500 32 bit (Intel)] on win32
Type "help", "copyright", "credits" or "license" for more information.

Generic mbedls API example:

>>> import mbed_lstools
>>> mbeds = mbed_lstools.create()
>>> mbeds
<mbed_lstools.lstools_win7.MbedLsToolsWin7 instance at 0x02F542B0>
>>> mbeds.list_mbeds()
[{'platform_name': 'K64F', 'mount_point': 'E:', 'target_id': '02400203D94B0E7724B7F3CF', 'serial_port': u'COM61'}]
>>> print mbeds

Extended mbedls API example:

>>> import mbed_lstools
>>> m = mbed_lstools.create()
>>> dir(m)
['DEBUG_FLAG',
 'ERRORLEVEL_FLAG',
 '__doc__',
 '__init__',
 '__module__',
 '__str__',
 'debug',
 'discover_connected_mbeds',
 'err',
 'get_connected_mbeds',
 'get_dos_devices',
 'get_json_data_from_file',
 'get_mbed_com_port',
 'get_mbed_devices',
 'get_mbed_htm_target_id',
 'get_mbeds',
 'get_mounted_devices',
 'get_string',
 'iter_keys',
 'iter_keys_as_str',
 'iter_vals', 'list_mbeds',
 'list_mbeds_by_targetid',
 'list_mbeds_ext',
 'list_platforms',
 'list_platforms_ext',
 'load_mbed_description',
 'manufacture_ids',
 'os_supported',
 'regbin2str',
 'scan_html_line_for_target_id',
 'usb_vendor_list',
 'winreg']
>>> m.list_platforms()
['LPC1768', 'K64F']
>>> m.list_platforms_ext()
{'K64F': 1, 'LPC1768': 2}

mbedls as command line tool

After installation of the mbed-ls package, you can use the mbedls command. It allows you to list all connected mbed-enabled devices and gives you the correct association between your board mount point (disk) and the serial port. TargetID information is also provided for your information.

$ mbedls
+---------------------+-------------------+-------------------+--------------------------------+
|platform_name        |mount_point        |serial_port        |target_id                       |
+---------------------+-------------------+-------------------+--------------------------------+
|KL25Z                |I:                 |COM89              |02000203240881BBD9F47C43        |
|NUCLEO_F302R8        |E:                 |COM34              |07050200623B61125D5EF72A        |
+---------------------+-------------------+-------------------+--------------------------------+

If you want to use mbedls in your toolchain, continuous integration or automation script and do not necessarily want to use the Python module mbed_lstools - this solution is for you.

Exporting mbedls output to JSON

You can export mbedls outputs to JSON format: just use the ---json switch and dump your file on the screen or redirect to a file. It should help you further automate your processes.

$ mbedls --json
[
    {
        "mount_point": "E:",
        "platform_name": "NUCLEO_L152RE",
        "serial_port": "COM9",
        "target_id": "07100200860579FAB960EFD7"
    },
    {
        "mount_point": "F:",
        "platform_name": null,
        "serial_port": "COM5",
        "target_id": "A000000001"
    },
    {
        "mount_point": "G:",
        "platform_name": "NUCLEO_F302R8",
        "serial_port": "COM34",
        "target_id": "07050200623B61125D5EF72A"
    },
    {
        "mount_point": "H:",
        "platform_name": "LPC1768",
        "serial_port": "COM77",
        "target_id": "101000000000000000000002F7F18695"
    },
    {
        "mount_point": "I:",
        "platform_name": "KL25Z",
        "serial_port": "COM89",
        "target_id": "02000203240881BBD9F47C43"
    }
]

Porting instructions

You can help us improve the mbed-ls tools by - for example - committing a new OS port. You can see the list of currently supported OSs in the Description section; if your OS isn't there, you can port it.

For further study please check how Mac OS X (Darwin) was ported in this pull request.

mbed-enabled technical specification overview

mbed-enabled program is designed for mbed developers and partners who want to clearly identify their products as interoperable mbed Enabled technologies. User facing DAPLink interface connects mbed-enabled device with host computer using USB interface.

Interface chip should in general follow few generic rules to allow proper host detection and compliance with for example mbed test tools. There are listed below:

  • Existance of CDC (virtual serial port)
    • Must support at all standard baudrates 9600 thru 115200
    • Must Support SendBreak resulting in target reset sequence
    • MUst have TargetID embedded in USBID
  • Mass Storage Device Class
    • Must support programming binary files (copy file on MSD results in target flashing)
    • Target flashing should not result in automatic target reset
    • Must have DETAILS.TXT with DAPlink specification
    • Must have mbed.htm with DAPlink specification
    • mbed.htm should contain link to platform with TargetID specified
    • Must have TargetID embedded in USBID

TargetID as device unique identifier

Each device must have an unique identifier which generic format is specified in below chapter.

TargetID generic format:

  • ASCII string containing hexadecimal values only: [a-fA-F0-9]{4, }
  • Should be longer than four ASCII characters (two bytes of hex data)
  • First 2 bytes coded with four ASCII characters are vendor code
    • Note: There might be more than one vendor code value assigned to one vendor.
  • Following 2 bytes coded with four ASCII characters are platform code*
  • Rest of ASCII characters are vendor / platform specific. Ignored by mbed-enabled tools
  • Vendor code + platform code should create globally unique value

Example TargetID coding:

  • Freescale K64F TargetID: 0240000033514e450019500585d40008e981000097969900
        02	40	000033514e450019500585d40008e981000097969900
        |   |
        |   v
        v	K64F
        Freescale

mbed-ls auto-detection approach for Ubuntu

Let's connect a few mbed boards to our Ubuntu host. The devices should mount as MSC and CDC (virtual disk and serial port). We'll use regular Linux commands to see the boards, then see how mbed-ls displays them.

In this example, we've connected to our Ububtu machine's USB ports:

  • 2 x STMicro's Nucleo mbed boards.
  • 2 x NXP mbed boards.
  • 1 x Freescale Freedom board.

We can see the mounting result in the usb-id directories in Ubuntu's file system under /dev/. To list mbed boards mounted to serial ports (CDC) via USB, we use the general Linux command:

$ ll /dev/serial/by-id

We'll see:

total 0
drwxr-xr-x root 140 Feb 19 12:38 ./
drwxr-xr-x root  80 Feb 19 12:35 ../
lrwxrwxrwx root  13 Feb 19 12:38 usb-MBED_MBED_CMSIS-DAP_02000203240881BBD9F47C43-if01 -> ../../ttyACM0
lrwxrwxrwx root  13 Feb 19 12:35 usb-MBED_MBED_CMSIS-DAP_A000000001-if01 -> ../../ttyACM4
lrwxrwxrwx root  13 Feb 19 12:35 usb-mbed_Microcontroller_101000000000000000000002F7F18695-if01 -> ../../ttyACM3
lrwxrwxrwx root  13 Feb 19 12:35 usb-STMicroelectronics_STM32_STLink_066EFF525257775087141721-if02 -> ../../ttyACM2
lrwxrwxrwx root  13 Feb 19 12:35 usb-STMicroelectronics_STM32_STLink_066EFF534951775087215736-if02 -> ../../ttyACM1

To list boards mounted to disks (MSC) via USB, we use the general Linux command:

$ ll /dev/disk/by-id

We'll see:

total 0
drwxr-xr-x root 340 Feb 19 12:38 ./
drwxr-xr-x root 120 Feb 19 12:35 ../
lrwxrwxrwx root   9 Dec  3 09:10 ata-HDS728080PLA380_40Y9028LEN_PFDB32S7S44XLM -> ../../sda
lrwxrwxrwx root  10 Dec  3 09:10 ata-HDS728080PLA380_40Y9028LEN_PFDB32S7S44XLM-part1 -> ../../sda1
lrwxrwxrwx root  10 Dec  3 09:10 ata-HDS728080PLA380_40Y9028LEN_PFDB32S7S44XLM-part2 -> ../../sda2
lrwxrwxrwx root  10 Dec  3 09:10 ata-HDS728080PLA380_40Y9028LEN_PFDB32S7S44XLM-part5 -> ../../sda5
lrwxrwxrwx root   9 Dec  3 09:10 ata-TSSTcorpDVD-ROM_TS-H352C -> ../../sr0
lrwxrwxrwx root   9 Feb 19 12:35 usb-MBED_MBED_CMSIS-DAP_A000000001-0:0 -> ../../sdf
lrwxrwxrwx root   9 Feb 19 12:38 usb-MBED_microcontroller_02000203240881BBD9F47C43-0:0 -> ../../sdb
lrwxrwxrwx root   9 Feb 19 12:35 usb-MBED_microcontroller_066EFF525257775087141721-0:0 -> ../../sdd
lrwxrwxrwx root   9 Feb 19 12:35 usb-MBED_microcontroller_066EFF534951775087215736-0:0 -> ../../sdc
lrwxrwxrwx root   9 Dec  3 16:10 usb-MBED_microcontroller_0670FF494956805087154420-0:0 -> ../../sdc
lrwxrwxrwx root   9 Feb 19 12:35 usb-mbed_Microcontroller_101000000000000000000002F7F18695-0:0 -> ../../sde
lrwxrwxrwx root   9 Dec  3 09:10 wwn-0x5000cca30ccffb77 -> ../../sda
lrwxrwxrwx root  10 Dec  3 09:10 wwn-0x5000cca30ccffb77-part1 -> ../../sda1
lrwxrwxrwx root  10 Dec  3 09:10 wwn-0x5000cca30ccffb77-part2 -> ../../sda2
lrwxrwxrwx root  10 Dec  3 09:10 wwn-0x5000cca30ccffb77-part5 -> ../../sda5

Note: mbed-ls tools pair only serial ports and mount points (not CMSIS-DAP - yet).

We can see that on our host machine (running Ubuntu) there are many 'disk type' devices visible under /dev/disk. The mbed boards can be distinguished and filtered by their unique USB-ID conventions. In our case, we can see pairs of usb-ids in both /dev/serial/usb-id and /dev/disk/usb-id with embedded TargetID. TargetID can be filtered out, for example using this sudo-regexpr: (“MBED”|”mbed”|”STMicro”)_([a-zA-z_-]+)_([a-zA-Z0-9]){4,}

For example, we can match the board 066EFF525257775087141721 by connecting a few dots:

  • usb-MBED_microcontroller_066EFF525257775087141721-0:0 -> ../../sdd
  • usb-STMicroelectronics_STM32_STLink_066EFF525257775087141721-if02 -> ../../ttyACM2 Based on the TargetID hash.

From this we know that the target platform has these properties:

  • The unique target platform identifier is 066E.
  • The serial port is ttyACM2.
  • The mount point is sdd.

Your mbed-ls implementation resolves those three and creates a “tuple” with those values (for each connected device). Using this tuple(s), mbed-ls will convert the platform number to a human-readable name etc.

Note that for some boards the TargetID format is proprietary (see STMicro boards) and usb-id does not have a valid TargetID where the four first letters are the target platform's unique ID. In that case, mbed-ls tools inspects the mbed.htm file on the mbed mounted disk to get the proper TargetID from the URL in the meta part of the HTML header.

In the following example, the URL http://mbed.org/device/?code=07050200623B61125D5EF72A for the STMicro Nucleo F302R8 board contains the valid TargetID 07050200623B61125D5EF72A, which mbed-ls uses to detect the platform_name. mbed-ls will then replace the invalid TargetID in usb-id with the value from mbed.htm.

<!-- mbed Microcontroller Website and Authentication Shortcut -->
<!-- Version: 0200 Build: Aug 27 2014 13:29:28 -->
<html>
<head>
<meta http-equiv="refresh" content="0; url=http://mbed.org/device/?code=07050200623B61125D5EF72A"/>
<title>mbed Website Shortcut</title>
</head>
<body></body>
</html>

This is the result of mbedls listing the connected devices that we saw above:

$ mbedls
+---------------------+-------------------+-------------------+----------------------------------------+
|platform_name        |mount_point        |serial_port        |target_id                               |
+---------------------+-------------------+-------------------+----------------------------------------+
|KL25Z                |I:                 |COM89              |02000203240881BBD9F47C43                |
|LPC1768              |H:                 |COM77              |101000000000000000000002F7F18695        |
|NUCLEO_F302R8        |G:                 |COM34              |07050200623B61125D5EF72A                |
|NUCLEO_L152RE        |E:                 |COM9               |07100200860579FAB960EFD7                |
|unknown              |F:                 |COM5               |A000000001                              |
+---------------------+-------------------+-------------------+----------------------------------------+

Retarget mbed-ls autodetection results

User can create file mbedls.json in given directory. mbedls.json file should contain JSON formatted data which will redefine mbed's parameters returned by mbed-ls. mbed-ls will automatically read mbedls.json file and alter auto-detection result. File should be placed in directory where we want to alter mbed-ls behavior.

  • Note: This feature in implicitly ON.
  • Note: This feature can be turned off with command line switch --skip-retarget.

mbedls.json file properties

  • If file mbedls.json exists will be implicitly used to retarget results.
  • If file mbedls.json exists and flag --skip-retarget is set, there will be no retarget.
  • If file mbedls.json doesn't exist flag --skip-retarget has no effect.

Example of retargeting

In this example we will replace serial port name during Freescale's K64F auto-detection:

$ mbedls
+--------------+---------------------+------------+------------+-------------------------------------------------+
|platform_name |platform_name_unique |mount_point |serial_port |target_id                                        |
+--------------+---------------------+------------+------------+-------------------------------------------------+
|K64F          |K64F[0]              |F:          |COM9        |0240022648cb1e77000000000000000000000000b512e3cf |
+--------------+---------------------+------------+------------+-------------------------------------------------+

Our device is detected on port COM9 and MSD is mounted on F:. We can check more details using --json switch:

$ mbedls --json
[
    {
        "mount_point": "F:",
        "platform_name": "K64F",
        "platform_name_unique": "K64F[0]",
        "serial_port": "COM9",
        "target_id": "0240022648cb1e77000000000000000000000000b512e3cf",
        "target_id_mbed_htm": "0240022648cb1e77000000000000000000000000b512e3cf",
        "target_id_usb_id": "0240022648cb1e77000000000000000000000000b512e3cf"
    }
]

We must understand that mbed-ls stores information about mbed devices in dictionaries. The same information can be presented as dictionary where its keys are target_id and value is a mbed auto-detection data.

$ mbedls --json-by-target-id
{
    "0240022648cb1e77000000000000000000000000b512e3cf": {
        "mount_point": "F:",
        "platform_name": "K64F",
        "platform_name_unique": "K64F[0]",
        "serial_port": "COM9",
        "target_id": "0240022648cb1e77000000000000000000000000b512e3cf",
        "target_id_mbed_htm": "0240022648cb1e77000000000000000000000000b512e3cf",
        "target_id_usb_id": "0240022648cb1e77000000000000000000000000b512e3cf"
    }
}

Let's say we want change serial_port's value to other COM port. For example we are using other serial port (e.g. while debugging) on our device as standard output. To do so we would have to create a new file called mbedls.json in directory where want to use this modification. File content could look like this: a JSON file where keys are target_id's and values are dictionaries with new values:

$ cat mbedls.json
{
    "0240022648cb1e77000000000000000000000000b512e3cf" : {
        "serial_port" : "MyComPort01"
    }
}

Now, when we issue mbedls command in this directory our auto-detection data will be replaced:

$ mbedls
+--------------+---------------------+------------+------------+-------------------------------------------------+
|platform_name |platform_name_unique |mount_point |serial_port |target_id                                        |
+--------------+---------------------+------------+------------+-------------------------------------------------+
|K64F          |K64F[0]              |F:          |MyComPort01 |0240022648cb1e77000000000000000000000000b512e3cf |
+--------------+---------------------+------------+------------+-------------------------------------------------+

Mocking new or existing target to custom platform name

Command line switch --mock provide simple manufacturers ID masking with new platform name. Users should be able to add temporarily new MID -> platform_name mapping when e.g. prototyping.

Mock configuration will be stored in $HOME/.mbed-ls/ directory, in local file .mbedls-mock.

Note*: MID stands for "manufacturers ID". MID is first four (4) characters of target_id string. Example: If target_id is 02400221A0811E505D5FE3E8, corresponding manufacturers ID is 0240.

Mock command line examples

  • Mock command line parameter: --mock or (switch -m)
  • Add new / mask existing mapping MID -> platform_name and assign MID:
    • $ mbedls --mock MID:PLATFORM_NAME or
    • $ mbedls --mock MID1:PLATFORM_NAME1,MID2:PLATFORM_NAME2
    • Example: $ mbedls --mock 0818:NUCLEO_F767ZI
  • Remove masking with '!' prefix: $ mbedls --mock !MID
  • Remove all maskings using !* notation: $ mbedls --mock !*
  • Combine above using comma (,) separator: $ mbedls --mock MID1:PLATFORM_NAME1,!MID2

Mocking example with Freescale K64F platform

Initial setup with 1 x Freescale K64F board:

$ mbedls
+--------------+---------------------+------------+------------+-------------------------+
|platform_name |platform_name_unique |mount_point |serial_port |target_id                |
+--------------+---------------------+------------+------------+-------------------------+
|K64F          |K64F[0]              |F:          |COM146      |02400221A0811E505D5FE3E8 |
+--------------+---------------------+------------+------------+-------------------------+
  • We can mask current mapping 0240 -> K64F to something else. For example we can replace K64F name with maybe more suitable for us in current setup FRDM-K64F:
$ mbedls --mock 0240:FRDM_K64F

Current mocking mapping is stored in local file .mbedls-mock:

$ cat .mbedls-mock
{
    "1234": "NEW_PLATFORM_1",
    "0240": "FRDM_K64F"
}

We can observe changes immediately. Please note this change only works in the same directory because we save .mbedls-mock file locally:

$ mbedls
+--------------+---------------------+------------+------------+-------------------------+
|platform_name |platform_name_unique |mount_point |serial_port |target_id                |
+--------------+---------------------+------------+------------+-------------------------+
|FRDM_K64F     |FRDM_K64F[0]         |F:          |COM146      |02400221A0811E505D5FE3E8 |
+--------------+---------------------+------------+------------+-------------------------+
  • We can remove mapping 1234 -> Anythying using ! wild-card. Note: We are using flag -json to get JSON format output of the --mock operation.
$ mbedls --mock !1234 --json
{
    "0240": "FRDM_K64F"
}
  • We can add multiple mappings at the same time:
$ mbedls --mock 0000:DUMMY,1111:DUMMY_2 --json
{
    "1111": "DUMMY_2",
    "0240": "FRDM_K64F",
    "0000": "DUMMY"
}
  • We can remove (!) all mappings using * wildcard:
$ mbedls --mock !*

We can verify our mapping is reset:

$ cat $HOME/.mbed-ls/.mbedls-mock
{}

mbed-ls unit testing

  • mbed-ls package contains basic unit tests.
  • Tests are stored under \mbed-ls\test directory.
  • Tests cover basic function calls, object construction and check if minimal requirements for OS porting are fulfilled.
  • Standard Python’s unittest library was used so it is easy to contribute to test effort. To invoke test procedure from command line please change directory to current mbed-ls repo directory and call setup.py with 'test' option.
$ cd mbed-ls
$ python setup.py test
running test
running egg_info
writing requirements to mbed_ls.egg-info\requires.txt
writing mbed_ls.egg-info\PKG-INFO
writing top-level names to mbed_ls.egg-info\top_level.txt
writing dependency_links to mbed_ls.egg-info\dependency_links.txt
writing entry points to mbed_ls.egg-info\entry_points.txt
reading manifest file 'mbed_ls.egg-info\SOURCES.txt'
writing manifest file 'mbed_ls.egg-info\SOURCES.txt'
running build_ext
test_example (test.basic.BasicTestCase) ... ok
test_detect_os_support_ext (test.detect_os.DetectOSTestCase) ... ok
test_porting_create (test.detect_os.DetectOSTestCase) ... ok
test_porting_mbed_lstools_os_info (test.detect_os.DetectOSTestCase) ... ok
test_porting_mbed_os_support (test.detect_os.DetectOSTestCase) ... ok
.
.
.
----------------------------------------------------------------------
Ran 18 tests in 0.302s

OK

Code coverage

We can measure code coverage for unit tests deployed together with mbed-ls. To do so we can use popular Python coverage tools. First install coverage tool on your system:

$ pip install coverage --upgrade

Next go to mbed-ls local directory and execute coverage for unit tests:

$ cd mbed-ls
$ coverage run setup.py test

Above command will execute test cases and will grab code coverage numbers. Now we are ready to print code coverage for all tests we've run:

$ coverage report
Name                                    Stmts   Miss  Cover
-----------------------------------------------------------
mbed_lstools\__init__.py                    2      0   100%
mbed_lstools\lstools_base.py              246    169    31%
mbed_lstools\lstools_darwin.py             88     77    13%
mbed_lstools\lstools_linux_generic.py     148     51    66%
mbed_lstools\lstools_ubuntu.py              5      0   100%
mbed_lstools\lstools_win7.py              112     60    46%
mbed_lstools\main.py                       90     63    30%
-----------------------------------------------------------
TOTAL                                     691    420    39%

Configure mbed-enabled device to work with your host

Windows serial port configuration

The mbed serial port works by default on Mac and Linux, but Windows needs a driver. Check here for more details.

Mounting with sync

While working under Ubuntu/Linux/OSX OSs you will have to mount your mbed-enabled device. You can follow instructions how to do it here.

Ubuntu

We recommend you use usbmount package to auto-mount mbed devices plugged to your host system:

  • Install usbmount:
$ sudo apt-get install usbmount
  • Make copy of /etc/usbmount/usbmount.conf:
$ sudo cp /etc/usbmount/usbmount.conf /etc/usbmount/usbmount.conf.bak
  • Modify /etc/usbmount/usbmount.conf file as follows:
ENABLED=1

MOUNTPOINTS="/media/usb0 /media/usb1 /media/usb2 /media/usb3
             /media/usb4 /media/usb5 /media/usb6 /media/usb7
             /media/usb8 /media/usb9 /media/usb10 /media/usb11
             /media/usb12 /media/usb13 /media/usb14 /media/usb15
             /media/usb16 /media/usb17 /media/usb18 /media/usb19"

FILESYSTEMS="vfat ext2 ext3 ext4 hfsplus"

MOUNTOPTIONS="sync,noexec,nodev,noatime,nodiratime"

FS_MOUNTOPTIONS="-fstype=vfat,gid=USERGROUP,uid=USERNAME,dmask=000,fmask=000"

VERBOSE=no

Note: In line:

FS_MOUNTOPTIONS="-fstype=vfat,gid=USERGROUP,uid=USERNAME,dmask=000,fmask=000"

change USERGROUP and USERNAME to your user and group names.

You can check user "USERNAME" group by typing:

$ groups USERNAME

This usbmount configuration will auto-mount your mbed devices without need to type mount commands each time you plug your mbeds!

Raspberry Pi - Raspbian Jessie Lite

For Raspberry Pi you can use LDM: A lightweight device mounter. This should improve stability of your mounts when using mbed-ls on Raspberry Pi. Currently we are using it with Raspbian Jessie Lite.

How to install and use LDM on your Raspberry Pi in three easy steps:

Prerequisites

LDM requires additional packages installed (libudev, mount and glib-2.0). You can use below command to check if all requirements are fulfilled:

$ pkg-config --cflags libudev mount glib-2.0

You may need to install additional packages:

$ sudo apt-get install libudev1
$ sudo apt-get install libudev-dev
$ sudo apt-get install libmount-dev
$ sudo apt-get install libglib2.0-dev

Note: You may want to issue $ sudo apt-get update to make sure that you have access to latest packages via apt-get.

Install LDM

$ git clone [email protected]:LemonBoy/ldm.git
$ cd ldm
$ sudo make install

Add LDM configuration file and configuration itself. Remember to change the your_own_user_name to valid username.

$ sudo touch /etc/ldm.conf
$ echo 'MOUNT_OWNER=your_own_user_name' >> /etc/ldm.conf
$ echo 'BASE_MOUNTPOINT=/mnt' >> /etc/ldm.conf

Enable LDM

$ systemctl status ldm
$ sudo systemctl enable ldm

Now you probably have to safely reboot to make sure changes will take place $sudo shutdown -r now (or sudo reboot) and enjoy more stable mbed-ls queries with your Raspberry Pi (Raspbian Jessie Lite).

Making sure LDM is active (running)

$ systemctl status ldm
ldm.service - lightweight device mounter
  Loaded: loaded (/usr/lib/systemd/system/ldm.service; enabled)
  Active: active (running) since Fri 2016-04-29 12:54:23 UTC; 48min ago
Main PID: 389 (ldm)
  CGroup: /system.slice/ldm.service
          └─389 /usr/bin/ldm -u jenkins -p /mnt

Known issues

About

mbedls is a set of tools inherited from mbed-lmtools and used to detect mbed-enabled devices on the host (Windows, Linux and Mac OS)

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages

  • Python 99.9%
  • Shell 0.1%