-
Notifications
You must be signed in to change notification settings - Fork 391
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add tct-colbert-v2 doc zero shot exp (#682)
* add tct-colbert-v2 doc zero shot exp Co-authored-by: Lin Jack <[email protected]> Co-authored-by: Lin Jack <[email protected]> Co-authored-by: Jack Lin <[email protected]> Co-authored-by: Jheng-Hong Yang <[email protected]>
- Loading branch information
1 parent
853d90f
commit 5cc929d
Showing
3 changed files
with
289 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
# | ||
# Pyserini: Reproducible IR research with sparse and dense representations | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
import argparse | ||
import json | ||
import os | ||
import sys | ||
import numpy as np | ||
import faiss | ||
import torch | ||
from tqdm import tqdm | ||
|
||
from transformers import BertTokenizer, BertModel | ||
|
||
# We're going to explicitly use a local installation of Pyserini (as opposed to a pip-installed one). | ||
# Comment these lines out to use a pip-installed one instead. | ||
sys.path.insert(0, './') | ||
sys.path.insert(0, '../pyserini/') | ||
|
||
def mean_pooling(last_hidden_state, attention_mask): | ||
token_embeddings = last_hidden_state | ||
input_mask_expanded = attention_mask.unsqueeze(-1).expand(token_embeddings.size()).float() | ||
sum_embeddings = torch.sum(token_embeddings * input_mask_expanded, 1) | ||
sum_mask = torch.clamp(input_mask_expanded.sum(1), min=1e-9) | ||
return sum_embeddings / sum_mask | ||
|
||
|
||
class TctColBertDocumentEncoder(torch.nn.Module): | ||
def __init__(self, model_name, tokenizer_name=None, device='cuda:0'): | ||
super().__init__() | ||
self.device = device | ||
self.model = BertModel.from_pretrained(model_name) | ||
self.model.to(self.device) | ||
self.tokenizer = BertTokenizer.from_pretrained(tokenizer_name or model_name) | ||
|
||
def encode(self, texts, titles=None): | ||
texts = ['[CLS] [D] ' + text for text in texts] | ||
max_length = 512 # hardcode for now | ||
inputs = self.tokenizer( | ||
texts, | ||
max_length=max_length, | ||
padding="longest", | ||
truncation=True, | ||
add_special_tokens=False, | ||
return_tensors='pt' | ||
) | ||
inputs.to(self.device) | ||
outputs = self.model(**inputs) | ||
embeddings = mean_pooling(outputs["last_hidden_state"][:, 4:, :], inputs['attention_mask'][:, 4:]) | ||
return embeddings.detach().cpu().numpy() | ||
|
||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--encoder', type=str, help='encoder name or path', required=True) | ||
parser.add_argument('--dimension', type=int, help='dimension of passage embeddings', required=False, default=768) | ||
parser.add_argument('--corpus', type=str, | ||
help='collection file to be encoded (format: jsonl)', required=True) | ||
parser.add_argument('--index', type=str, help='directory to store brute force index of corpus', required=True) | ||
parser.add_argument('--batch', type=int, help='batch size', default=8) | ||
parser.add_argument('--device', type=str, help='device cpu or cuda [cuda:0, cuda:1...]', default='cuda:0') | ||
args = parser.parse_args() | ||
|
||
# tokenizer = AutoTokenizer.from_pretrained(args.encoder) | ||
# model = AutoModel.from_pretrained(args.encoder) | ||
model = TctColBertDocumentEncoder(model_name=args.encoder, device=args.device) | ||
|
||
index = faiss.IndexFlatIP(args.dimension) | ||
|
||
if not os.path.exists(args.index): | ||
os.mkdir(args.index) | ||
|
||
texts = [] | ||
with open(os.path.join(args.index, 'docid'), 'w') as id_file: | ||
file = os.path.join(args.corpus) | ||
print(f'Loading {file}') | ||
with open(file, 'r') as corpus: | ||
for idx, line in enumerate(tqdm(corpus.readlines())): | ||
info = json.loads(line) | ||
docid = info['id'] | ||
text = info['contents'] | ||
id_file.write(f'{docid}\n') | ||
# docs can have many \n ... | ||
fields = text.split('\n') | ||
title, text = fields[1], fields[2:] | ||
if len(text) > 1: | ||
text = ' '.join(text) | ||
text = f"{title} {text}" | ||
texts.append(text.lower()) | ||
|
||
for idx in tqdm(range(0, len(texts), args.batch)): | ||
text_batch = texts[idx: idx+args.batch] | ||
embeddings = model.encode(text_batch) | ||
index.add(np.array(embeddings)) | ||
faiss.write_index(index, os.path.join(args.index, 'index')) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,70 @@ | ||
# | ||
# Pyserini: Reproducible IR research with sparse and dense representations | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"); | ||
# you may not use this file except in compliance with the License. | ||
# You may obtain a copy of the License at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# Unless required by applicable law or agreed to in writing, software | ||
# distributed under the License is distributed on an "AS IS" BASIS, | ||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
# See the License for the specific language governing permissions and | ||
# limitations under the License. | ||
# | ||
|
||
import argparse | ||
|
||
import faiss | ||
import os | ||
|
||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--dimension', type=int, help='dimension of passage embeddings', required=False, default=768) | ||
parser.add_argument('--prefix', type=str, help='directory to store brute force index of corpus', required=True) | ||
parser.add_argument('--segment-num', type=int, help='number of passage segments, use -1 for MaxP', default=1) | ||
parser.add_argument('--shard-num', type=int, help='number of shards', default=1) | ||
args = parser.parse_args() | ||
|
||
new_index = faiss.IndexFlatIP(args.dimension) | ||
docid_list = [] | ||
for i in range(args.shard_num): | ||
index = os.path.join(args.prefix + f"{i:02d}", 'index') | ||
docid = os.path.join(args.prefix + f"{i:02d}", 'docid') | ||
print(f"reading ... {index}") | ||
line_idx = [] | ||
with open(docid, 'r') as f: | ||
for idx, line in enumerate(f): | ||
doc_id, psg_id = line.strip().split("#") | ||
if args.segment_num == -1: | ||
line_idx.append(idx) | ||
docid_list.append(doc_id + "#" + psg_id) | ||
|
||
elif int(psg_id) < args.segment_num: | ||
line_idx.append(idx) | ||
docid_list.append(doc_id + "#" + psg_id) | ||
|
||
index = faiss.read_index(index) | ||
vectors = index.reconstruct_n(0, index.ntotal) | ||
new_index.add(vectors[line_idx]) # filter segments | ||
|
||
if args.segment_num == -1: | ||
postfix = 'maxp' | ||
elif args.segment_num == 1: | ||
postfix = 'firstp' | ||
else: | ||
postfix = f'seg{args.segment_num}' | ||
|
||
if not os.path.exists(args.prefix + f'full-{postfix}'): | ||
os.mkdir(args.prefix + f'full-{postfix}') | ||
|
||
|
||
print(f"number of docs: {len(docid_list)}") | ||
print(f"number of vecs: {new_index.ntotal}") | ||
assert len(docid_list) == new_index.ntotal | ||
faiss.write_index(new_index, os.path.join(args.prefix + f'full-{postfix}', 'index')) | ||
|
||
with open(os.path.join(args.prefix + f'full-{postfix}', 'docid'), 'w') as wfd: | ||
for docid in docid_list: | ||
wfd.write(docid + '\n') |