SafeLLVM provides a x86_64 backend for LLVM 16 that eliminates most if not all usable ROP gadgets in the generated code. It achieves this by using a combination of runtime control-flow integrity and instruction rewriting.
You can read our paper for more: https://arxiv.org/abs/2305.06092
In principle, this is a modern implementation of G-Free. Read more about G-Free on my blog: https://blog.federico.codes/posts/gfree/
Most of our changes are located at ./llvm/lib/Target/X86/SafeLLVM
To build and install SafeLLVM, you can simply run the following script:
./scripts/build_clangonly.sh <num_cores> ["Debug"|"Release"]
This will build and install a version of clang that uses SafeLLVM as its backend. You can choose to build the compiler in either Debug or Release mode.
A series of various example programs can be found in ./examples
.
These examples include small snippets of code that need to be transformed,
vulnerable programs that are used to test the effectiveness of the compiler,
and a few big programs (including Doom!) that are used as integration tests
for the compiler.
There is a script that uses ropper
to check the number of gadgets in the
binary. We filter out some of the gadgets created by the CFI mechanism, as
those are essentially false positives (they are not usable).
./scripts/num_gadgets.sh <path_to_binary>
This directory and its sub-directories contain the source code for LLVM, a toolkit for the construction of highly optimized compilers, optimizers, and run-time environments.
The README briefly describes how to get started with building LLVM. For more information on how to contribute to the LLVM project, please take a look at the Contributing to LLVM guide.
Taken from here.
Welcome to the LLVM project!
The LLVM project has multiple components. The core of the project is itself called "LLVM". This contains all of the tools, libraries, and header files needed to process intermediate representations and convert them into object files. Tools include an assembler, disassembler, bitcode analyzer, and bitcode optimizer. It also contains basic regression tests.
C-like languages use the Clang frontend. This component compiles C, C++, Objective-C, and Objective-C++ code into LLVM bitcode -- and from there into object files, using LLVM.
Other components include: the libc++ C++ standard library, the LLD linker, and more.
The LLVM Getting Started documentation may be out of date. The Clang Getting Started page might have more accurate information.
This is an example work-flow and configuration to get and build the LLVM source:
-
Checkout LLVM (including related sub-projects like Clang):
-
git clone https://github.com/llvm/llvm-project.git
-
Or, on windows,
git clone --config core.autocrlf=false https://github.com/llvm/llvm-project.git
-
-
Configure and build LLVM and Clang:
-
cd llvm-project
-
cmake -S llvm -B build -G <generator> [options]
Some common build system generators are:
Ninja
--- for generating Ninja build files. Most llvm developers use Ninja.Unix Makefiles
--- for generating make-compatible parallel makefiles.Visual Studio
--- for generating Visual Studio projects and solutions.Xcode
--- for generating Xcode projects.
Some common options:
-
-DLLVM_ENABLE_PROJECTS='...'
and-DLLVM_ENABLE_RUNTIMES='...'
--- semicolon-separated list of the LLVM sub-projects and runtimes you'd like to additionally build.LLVM_ENABLE_PROJECTS
can include any of: clang, clang-tools-extra, cross-project-tests, flang, libc, libclc, lld, lldb, mlir, openmp, polly, or pstl.LLVM_ENABLE_RUNTIMES
can include any of libcxx, libcxxabi, libunwind, compiler-rt, libc or openmp. Some runtime projects can be specified either inLLVM_ENABLE_PROJECTS
or inLLVM_ENABLE_RUNTIMES
.For example, to build LLVM, Clang, libcxx, and libcxxabi, use
-DLLVM_ENABLE_PROJECTS="clang" -DLLVM_ENABLE_RUNTIMES="libcxx;libcxxabi"
. -
-DCMAKE_INSTALL_PREFIX=directory
--- Specify for directory the full path name of where you want the LLVM tools and libraries to be installed (default/usr/local
). Be careful if you install runtime libraries: if your system uses those provided by LLVM (like libc++ or libc++abi), you must not overwrite your system's copy of those libraries, since that could render your system unusable. In general, using something like/usr
is not advised, but/usr/local
is fine. -
-DCMAKE_BUILD_TYPE=type
--- Valid options for type are Debug, Release, RelWithDebInfo, and MinSizeRel. Default is Debug. -
-DLLVM_ENABLE_ASSERTIONS=On
--- Compile with assertion checks enabled (default is Yes for Debug builds, No for all other build types).
-
cmake --build build [-- [options] <target>]
or your build system specified above directly.-
The default target (i.e.
ninja
ormake
) will build all of LLVM. -
The
check-all
target (i.e.ninja check-all
) will run the regression tests to ensure everything is in working order. -
CMake will generate targets for each tool and library, and most LLVM sub-projects generate their own
check-<project>
target. -
Running a serial build will be slow. To improve speed, try running a parallel build. That's done by default in Ninja; for
make
, use the option-j NNN
, whereNNN
is the number of parallel jobs to run. In most cases, you get the best performance if you specify the number of CPU threads you have. On some Unix systems, you can specify this with-j$(nproc)
.
-
-
For more information see CMake.
-
Consult the Getting Started with LLVM page for detailed information on configuring and compiling LLVM. You can visit Directory Layout to learn about the layout of the source code tree.
Join LLVM Discourse forums, discord chat or #llvm IRC channel on OFTC.
The LLVM project has adopted a code of conduct for participants to all modes of communication within the project.