Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Add Gemma Support #393

Merged
merged 5 commits into from
Mar 11, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions awq/models/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -14,3 +14,4 @@
from .llava import LlavaAWQForCausalLM
from .mixtral import MixtralAWQForCausalLM
from .qwen2 import Qwen2AWQForCausalLM
from .gemma import GemmaAWQForCausalLM
1 change: 1 addition & 0 deletions awq/models/auto.py
Original file line number Diff line number Diff line change
Expand Up @@ -23,6 +23,7 @@
"baichuan": BaichuanAWQForCausalLM,
"llava": LlavaAWQForCausalLM,
"qwen2": Qwen2AWQForCausalLM,
"gemma": GemmaAWQForCausalLM,
}


Expand Down
1 change: 1 addition & 0 deletions awq/models/base.py
Original file line number Diff line number Diff line change
Expand Up @@ -67,6 +67,7 @@
"baichuan": "AutoModelForCausalLM",
"llava": "AutoModelForVision2Seq",
"qwen2": "AutoModelForCausalLM",
"gemma": "AutoModelForCausalLM",
}


Expand Down
149 changes: 149 additions & 0 deletions awq/models/gemma.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,149 @@
import tqdm
import torch
from typing import List, Tuple
from .base import BaseAWQForCausalLM
from awq.utils.fused_utils import fuse_qkv
from awq.modules.fused.block import LlamaLikeBlock
from awq.modules.fused.model import LlamaLikeModel
from transformers.models.gemma.modeling_gemma import (
GemmaDecoderLayer as OldGemmaDecoderLayer,
GemmaForCausalLM as OldGemmaForCausalLM,
)
from awq.modules.fused.norm import FasterTransformerRMSNorm


class GemmaAWQForCausalLM(BaseAWQForCausalLM):
layer_type = "GemmaDecoderLayer"
max_new_tokens_key = "max_position_embeddings"

@staticmethod
def fuse_layers(model: OldGemmaDecoderLayer):
fuser = GemmaFuser(model)
fuser.fuse_transformer()

@staticmethod
def get_model_layers(model: OldGemmaForCausalLM):
return model.model.layers

@staticmethod
def get_act_for_scaling(module: OldGemmaDecoderLayer):
return dict(is_scalable=False)

@staticmethod
def move_embed(model: OldGemmaForCausalLM, device: str):
model.model.embed_tokens = model.model.embed_tokens.to(device)

@staticmethod
def get_layers_for_scaling(module: OldGemmaDecoderLayer, input_feat, module_kwargs):
layers = []

# attention input
layers.append(
dict(
prev_op=module.input_layernorm,
layers=[
module.self_attn.q_proj,
module.self_attn.k_proj,
module.self_attn.v_proj,
],
inp=input_feat["self_attn.q_proj"],
module2inspect=module.self_attn,
kwargs=module_kwargs,
)
)

# attention out
# Please refer to https://github.com/mit-han-lab/llm-awq/pull/67#issue-1850622696
if module.self_attn.v_proj.weight.shape == module.self_attn.o_proj.weight.shape:
layers.append(
dict(
prev_op=module.self_attn.v_proj,
layers=[module.self_attn.o_proj],
inp=input_feat["self_attn.o_proj"],
)
)

# linear 1
layers.append(
dict(
prev_op=module.post_attention_layernorm,
layers=[module.mlp.gate_proj, module.mlp.up_proj],
inp=input_feat["mlp.gate_proj"],
module2inspect=module.mlp,
)
)

# linear 2
layers.append(
dict(
prev_op=module.mlp.up_proj,
layers=[module.mlp.down_proj],
inp=input_feat["mlp.down_proj"],
)
)

return layers


class GemmaFuser:
def __init__(self, model: OldGemmaForCausalLM):
self.model = model

self.Gemma_blocks: List[Tuple[str, OldGemmaDecoderLayer]] = [
(name, module)
for name, module in self.model.named_modules()
if "GemmaDecoderLayer".lower() in module.__class__.__name__.lower()
]

def fuse_transformer(self):
blocks = []

module: OldGemmaDecoderLayer
for module in tqdm.tqdm(self.model.model.layers, desc="Fusing layers..."):
device = next(iter(module.state_dict().values())).device
qkv = fuse_qkv(
module,
module.self_attn.q_proj,
module.self_attn.k_proj,
module.self_attn.v_proj,
)
with torch.no_grad():
# GemmaRMSNorm is different from Llama's in that it multiplies
# (1 + weight) to the output, instead of just weight.
module.input_layernorm.weight += 1
module.post_attention_layernorm.weight += 1
norm_1 = FasterTransformerRMSNorm(
module.input_layernorm.weight, module.input_layernorm.eps
)
norm_2 = FasterTransformerRMSNorm(
module.post_attention_layernorm.weight,
module.post_attention_layernorm.eps,
)
blocks.append(
LlamaLikeBlock(
hidden_size=self.model.config.hidden_size,
n_heads=self.model.config.num_attention_heads,
n_kv_heads=self.model.config.num_key_value_heads,
qkv_layer=qkv,
o_proj=module.self_attn.o_proj,
mlp=module.mlp,
norm_1=norm_1,
norm_2=norm_2,
dev=device,
max_seq_len=self.model.config.max_seq_len,
rope_theta=self.model.config.rope_theta,
head_dim=self.model.config.head_dim,
)
)

with torch.no_grad():
# Normalize Gemma's embedding layer
self.model.model.embed_tokens.weight *= self.model.config.hidden_size**0.5

self.model.model = LlamaLikeModel(
self.model.config.vocab_size,
blocks,
self.model.model.embed_tokens,
self.model.model.norm,
)
setattr(self.model.model, "blocks", self.model.model.blocks)
13 changes: 9 additions & 4 deletions awq/modules/fused/attn.py
Original file line number Diff line number Diff line change
Expand Up @@ -25,12 +25,12 @@


class RoPE(nn.Module):
def __init__(self, hidden_size, n_heads, max_seq_len, device, rope_theta):
def __init__(self, head_dim, max_seq_len, device, rope_theta):
super(RoPE, self).__init__()

self.freqs_cis = nn.Parameter(
self.precompute_freqs_cis(
hidden_size // n_heads, max_seq_len * 2, rope_theta
head_dim, max_seq_len * 2, rope_theta
).to(device),
requires_grad=False,
)
Expand Down Expand Up @@ -118,14 +118,19 @@ def __init__(
use_alibi=False,
attention_shapes=None,
rope_theta=10000,
head_dim=None,
**kwargs
):
super().__init__()
self.hidden_size = hidden_size
self.n_heads = n_heads
self.n_kv_heads = n_kv_heads
self.n_kv_groups = n_heads // n_kv_heads if n_kv_heads != 0 else 0
self.head_dim = self.hidden_size // n_heads
self.head_dim = head_dim

if head_dim is None:
self.head_dim = hidden_size // n_heads

self.qkv_proj = qkv_layer
self.o_proj = o_proj
self.start_pos = 0
Expand Down Expand Up @@ -162,7 +167,7 @@ def __init__(
self.is_neox = False
else:
self.alibi = None
self.rope = RoPE(hidden_size, n_heads, max_seq_len, dev, rope_theta)
self.rope = RoPE(self.head_dim, max_seq_len, dev, rope_theta)
self.rotary_dim = self.head_dim
self.is_neox = True

Expand Down
8 changes: 8 additions & 0 deletions awq/modules/fused/block.py
Original file line number Diff line number Diff line change
Expand Up @@ -80,10 +80,17 @@ def __init__(
max_seq_len,
rope_theta=10000,
use_alibi=False,
head_dim=None,
):
super().__init__()
self.n_heads = n_heads
self.n_kv_heads = n_kv_heads
self.head_dim = hidden_size // n_heads

# To support gemma-7b, its head_dim is separate
if head_dim:
self.head_dim = head_dim

self.hidden_size = hidden_size
self.norm_1 = norm_1.to(dev)
self.attn = QuantAttentionFused(
Expand All @@ -96,6 +103,7 @@ def __init__(
max_seq_len=max_seq_len,
use_alibi=use_alibi,
rope_theta=rope_theta,
head_dim=head_dim,
).to(dev)
self.norm_2 = norm_2.to(dev)
self.mlp = mlp.to(dev)
Expand Down
4 changes: 2 additions & 2 deletions awq/modules/fused/model.py
Original file line number Diff line number Diff line change
Expand Up @@ -116,14 +116,14 @@ def forward(
h,
mask,
)
h, _, past_key_value = layer(
h, _, _ = layer(
h, None, attention_mask=mask, is_causal=is_causal
)
h = self.norm(h)

return BaseModelOutputWithPast(
last_hidden_state=h,
past_key_values=past_key_value,
past_key_values=None,
hidden_states=(),
attentions=(),
)
Expand Down
13 changes: 11 additions & 2 deletions awq/quantize/scale.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,9 +6,10 @@
from awq.utils.module import get_op_by_name, set_op_by_name
from transformers.models.bloom.modeling_bloom import BloomGelu
from transformers.models.llama.modeling_llama import LlamaRMSNorm
from transformers.models.gemma.modeling_gemma import GemmaRMSNorm
from transformers.activations import NewGELUActivation, PytorchGELUTanh, GELUActivation

allowed_norms = [nn.LayerNorm, LlamaRMSNorm]
allowed_norms = [nn.LayerNorm, LlamaRMSNorm, GemmaRMSNorm]
allowed_act_fns = [
nn.GELU,
BloomGelu,
Expand Down Expand Up @@ -88,7 +89,15 @@ def scale_ln_fcs(ln: nn.Linear, fcs: List[nn.Linear], scales: torch.Tensor):

scales = scales.to(ln.weight.device)

ln.weight.div_(scales)
# GemmaRMSNorm is different from Llama's in that it multiplies
# (1 + weight) to the output, instead of just weight.
if isinstance(ln, GemmaRMSNorm):
ln.weight += 1
ln.weight.div_(scales)
ln.weight -= 1
else:
ln.weight.div_(scales)

if hasattr(ln, "bias") and ln.bias is not None:
ln.bias.div_(scales)

Expand Down